Interplay between charge ordering and superconducting correlations in the extended Hubbard model

被引:1
作者
Farkasovsky, Pavol [1 ]
机构
[1] Slovak Acad Sci, Inst Expt Phys, Watsonova 47, Kosice 04001, Slovakia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 09期
关键词
FALICOV-KIMBALL MODEL; ELECTRON CORRELATIONS; STRIPES; HUND; ENHANCEMENT; PHASE; HOLES; SPINS;
D O I
10.1140/epjp/s13360-024-05653-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine effects of charge ordering on superconducting correlations in the extended Hubbard model with Falicov-Kimball coupling in two dimensions. Charge orderings are generated by f-electron distributions on the localized f orbitals, which act as an internal potential for itinerant d electrons moving in the Hubbard d band. For the small finite cluster of L=4x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=4 \times 4$$\end{document} sites the model is studied exactly over the complete set of f-electron distributions, while for larger clusters the projector Quantum-Monte-Carlo method and the reduced set of f-electron distributions (the periodic, phase separated and phase segregated configurations) is used. It is found that the enhancement of superconducting correlations in the d-wave channel depends strongly on the type of f-electron ordering and changes significantly with f and d electron concentration (nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document},nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document}) as well as with interband Coulomb interaction Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document}. In particular, it is found that for small values of Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} the superconducting correlations are the most significantly enhanced for segregated configurations (all f-electrons clump together), for all f-electron concentrations, while for higher d-band fillings axial stripes (bands) with f-electron concentrations nf similar to 0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f \sim 0.5$$\end{document} yield the largest enhancement of superconducting correlations. The region of axial striped phases is systematically reduced with increasing Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and for sufficiently large Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} (Ufd similar to 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}\sim 2$$\end{document}) it persists only in the region of small nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} values.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Density-dependent tunneling in the extended Bose-Hubbard model
    Maik, Michal
    Hauke, Philipp
    Dutta, Omjyoti
    Lewenstein, Maciej
    Zakrzewski, Jakub
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [42] Local Electron Correlations in a Two-Dimensional Hubbard Model on the Penrose Lattice
    Takemori, Nayuta
    Koga, Akihisa
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2015, 84 (02)
  • [43] Electronic correlations versus lattice interactions: Interplay of charge and anion orders in (TMTTF)2 X
    Pustogow, A.
    Peterseim, T.
    Kolatschek, S.
    Engel, L.
    Dressel, M.
    PHYSICAL REVIEW B, 2016, 94 (19)
  • [44] Enhanced superconductivity by near-neighbor attraction in the doped extended Hubbard model
    Peng, Cheng
    Wang, Yao
    Wen, Jiajia
    Lee, Young S.
    Devereaux, Thomas P.
    Jiang, Hong-Chen
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [45] Variational identification of a fractional Chern insulator in an extended Bose-Hubbard model
    Shapourian, Hassan
    Clark, Bryan K.
    PHYSICAL REVIEW B, 2016, 93 (03)
  • [46] Stripes in the extended t - t′ Hubbard model: A variational Monte Carlo analysis
    Marino, Vito
    Becca, Federico
    Tocchio, Luca F.
    SCIPOST PHYSICS, 2022, 12 (06):
  • [47] Electronic instabilities of the extended Hubbard model on the honeycomb lattice from functional renormalization
    Volpez, Yanick
    Scherer, Daniel D.
    Scherer, Michael M.
    PHYSICAL REVIEW B, 2016, 94 (16)
  • [48] Strong coupling expansion of the extended Hubbard model with spin-orbit coupling
    Farrell, Aaron
    Pereg-Barnea, T.
    PHYSICAL REVIEW B, 2014, 89 (03)
  • [49] Extended Hubbard model with renormalized Wannier wave functions in the correlated state III
    Kadzielawa, Andrzej P.
    Spalek, Jozef
    Kurzyk, Jan
    Wojcik, Wlodzimierz
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (06)
  • [50] Connection between the charge density waves and the superconducting state in the two-Fluid model of superconductivity in HTSC
    Amelin, I. I.
    LOW TEMPERATURE PHYSICS, 2020, 46 (01) : 59 - 63