EUROPEAN PHYSICAL JOURNAL PLUS
|
2024年
/
139卷
/
09期
关键词:
FALICOV-KIMBALL MODEL;
ELECTRON CORRELATIONS;
STRIPES;
HUND;
ENHANCEMENT;
PHASE;
HOLES;
SPINS;
D O I:
10.1140/epjp/s13360-024-05653-7
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We examine effects of charge ordering on superconducting correlations in the extended Hubbard model with Falicov-Kimball coupling in two dimensions. Charge orderings are generated by f-electron distributions on the localized f orbitals, which act as an internal potential for itinerant d electrons moving in the Hubbard d band. For the small finite cluster of L=4x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=4 \times 4$$\end{document} sites the model is studied exactly over the complete set of f-electron distributions, while for larger clusters the projector Quantum-Monte-Carlo method and the reduced set of f-electron distributions (the periodic, phase separated and phase segregated configurations) is used. It is found that the enhancement of superconducting correlations in the d-wave channel depends strongly on the type of f-electron ordering and changes significantly with f and d electron concentration (nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document},nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document}) as well as with interband Coulomb interaction Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document}. In particular, it is found that for small values of Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} the superconducting correlations are the most significantly enhanced for segregated configurations (all f-electrons clump together), for all f-electron concentrations, while for higher d-band fillings axial stripes (bands) with f-electron concentrations nf similar to 0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f \sim 0.5$$\end{document} yield the largest enhancement of superconducting correlations. The region of axial striped phases is systematically reduced with increasing Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and for sufficiently large Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} (Ufd similar to 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}\sim 2$$\end{document}) it persists only in the region of small nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} values.
机构:
Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USAStanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
Peng, Cheng
Wang, Yao
论文数: 0引用数: 0
h-index: 0
机构:
Clemson Univ, Dept Phys & Astron, Clemson, SC 29631 USAStanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
Wang, Yao
Wen, Jiajia
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USAStanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
Wen, Jiajia
Lee, Young S.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USAStanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
Lee, Young S.
Devereaux, Thomas P.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USAStanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
Devereaux, Thomas P.
Jiang, Hong-Chen
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USAStanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA