Interplay between charge ordering and superconducting correlations in the extended Hubbard model

被引:1
作者
Farkasovsky, Pavol [1 ]
机构
[1] Slovak Acad Sci, Inst Expt Phys, Watsonova 47, Kosice 04001, Slovakia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 09期
关键词
FALICOV-KIMBALL MODEL; ELECTRON CORRELATIONS; STRIPES; HUND; ENHANCEMENT; PHASE; HOLES; SPINS;
D O I
10.1140/epjp/s13360-024-05653-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine effects of charge ordering on superconducting correlations in the extended Hubbard model with Falicov-Kimball coupling in two dimensions. Charge orderings are generated by f-electron distributions on the localized f orbitals, which act as an internal potential for itinerant d electrons moving in the Hubbard d band. For the small finite cluster of L=4x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=4 \times 4$$\end{document} sites the model is studied exactly over the complete set of f-electron distributions, while for larger clusters the projector Quantum-Monte-Carlo method and the reduced set of f-electron distributions (the periodic, phase separated and phase segregated configurations) is used. It is found that the enhancement of superconducting correlations in the d-wave channel depends strongly on the type of f-electron ordering and changes significantly with f and d electron concentration (nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document},nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document}) as well as with interband Coulomb interaction Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document}. In particular, it is found that for small values of Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} the superconducting correlations are the most significantly enhanced for segregated configurations (all f-electrons clump together), for all f-electron concentrations, while for higher d-band fillings axial stripes (bands) with f-electron concentrations nf similar to 0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f \sim 0.5$$\end{document} yield the largest enhancement of superconducting correlations. The region of axial striped phases is systematically reduced with increasing Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and for sufficiently large Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} (Ufd similar to 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}\sim 2$$\end{document}) it persists only in the region of small nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} values.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Various Charge-Ordered States in the Extended Hubbard Model with On-Site Attraction in the Zero-Bandwidth Limit
    Kapcia, Konrad Jerzy
    Baranski, Jan
    Robaszkiewicz, Stanisaw
    Ptok, Andrzej
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2017, 30 (01) : 109 - 115
  • [32] Thermodynamics of the metal-insulator transition in the extended Hubbard model
    Schueler, Malte
    van Loon, Erik G. C. P.
    Katsnelson, Mikhail, I
    Wehling, Tim O.
    SCIPOST PHYSICS, 2019, 6 (06):
  • [33] Entanglement and quantum correlations in the honeycomb graphene lattice within the Hubbard model
    Mhamdi, H.
    Jebli, L.
    Habiballah, N.
    Nassik, M.
    EUROPEAN PHYSICAL JOURNAL D, 2024, 78 (01)
  • [34] Superconducting Fluctuations in the Normal State of the Two-Dimensional Hubbard Model
    Chen, Xi
    LeBlanc, J. P. F.
    Gull, Emanuel
    PHYSICAL REVIEW LETTERS, 2015, 115 (11)
  • [35] Stripe correlations in the two-dimensional Hubbard-Holstein model
    Karakuzu, Seher
    Ly, Andy Tanjaroon
    Mai, Peizhi
    Neuhaus, James
    Maier, Thomas A.
    Johnston, Steven
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [36] Metal–Insulator Transition in the Hubbard Model: Correlations and Spiral Magnetic Structures
    Marat A. Timirgazin
    Petr A. Igoshev
    Anatoly K. Arzhnikov
    Valentin Yu. Irkhin
    Journal of Low Temperature Physics, 2016, 185 : 651 - 656
  • [37] Interplay Between Electron-Phonon Interaction and Hubbard Repulsion: an Exact Approach
    Nath, S.
    Mondal, N. S.
    Ghosh, N. K.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2015, 28 (06) : 1687 - 1692
  • [38] Phenomenological XXZ model for the competition between superconductivity and charge order in cuprates
    Venditti, Giulia
    Maccari, Ilaria
    Lorenzana, Jose
    Caprara, Sergio
    SCIPOST PHYSICS, 2023, 15 (06):
  • [39] Charge flow model for atomic ordering in nonisovalent alloys
    Wang, Shuzhi
    Wang, Lin-Wang
    PHYSICAL REVIEW B, 2011, 83 (11):
  • [40] Pairing symmetries in the Zeeman-coupled extended attractive Hubbard model
    Nayak, Swagatam
    Batra, Navketan
    Kumar, Sanjeev
    SCIENTIFIC REPORTS, 2021, 11 (01)