Interplay between charge ordering and superconducting correlations in the extended Hubbard model

被引:1
|
作者
Farkasovsky, Pavol [1 ]
机构
[1] Slovak Acad Sci, Inst Expt Phys, Watsonova 47, Kosice 04001, Slovakia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 09期
关键词
FALICOV-KIMBALL MODEL; ELECTRON CORRELATIONS; STRIPES; HUND; ENHANCEMENT; PHASE; HOLES; SPINS;
D O I
10.1140/epjp/s13360-024-05653-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine effects of charge ordering on superconducting correlations in the extended Hubbard model with Falicov-Kimball coupling in two dimensions. Charge orderings are generated by f-electron distributions on the localized f orbitals, which act as an internal potential for itinerant d electrons moving in the Hubbard d band. For the small finite cluster of L=4x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=4 \times 4$$\end{document} sites the model is studied exactly over the complete set of f-electron distributions, while for larger clusters the projector Quantum-Monte-Carlo method and the reduced set of f-electron distributions (the periodic, phase separated and phase segregated configurations) is used. It is found that the enhancement of superconducting correlations in the d-wave channel depends strongly on the type of f-electron ordering and changes significantly with f and d electron concentration (nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document},nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document}) as well as with interband Coulomb interaction Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document}. In particular, it is found that for small values of Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} the superconducting correlations are the most significantly enhanced for segregated configurations (all f-electrons clump together), for all f-electron concentrations, while for higher d-band fillings axial stripes (bands) with f-electron concentrations nf similar to 0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f \sim 0.5$$\end{document} yield the largest enhancement of superconducting correlations. The region of axial striped phases is systematically reduced with increasing Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and for sufficiently large Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} (Ufd similar to 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}\sim 2$$\end{document}) it persists only in the region of small nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} values.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Charge glass in an extended dimer Hubbard model
    Deglint, Meldon B.
    Akella, Krishant
    Kennett, Malcolm P.
    PHYSICAL REVIEW B, 2022, 106 (08)
  • [32] Superconducting phases of the extended Hubbard model for doped systems
    Szabo, Z
    Gulacsi, Z
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 609 - 610
  • [33] Exotic superconducting states in the extended attractive Hubbard model
    Nayak, Swagatam
    Kumar, Sanjeev
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (13)
  • [34] Superconducting states with the lattice distortion in the extended Hubbard model
    Miyai, E
    Ozaki, MA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (09): : 1153 - 1186
  • [35] Interplay of frustration, magnetism, charge ordering, and covalency in the ionic Hubbard model for Na0.5CoO2
    Merino, Jaime
    Powell, B. J.
    McKenzie, Ross H.
    PHYSICAL REVIEW B, 2009, 79 (16):
  • [36] Charge ordering in the one-dimensional extended Hubbard model: Implication to the TMTTF family of organic conductors
    Shibata, Y
    Nishimoto, S
    Ohta, Y
    PHYSICAL REVIEW B, 2001, 64 (23)
  • [37] Metal-insulator transition and charge ordering in the extended Hubbard model at one-quarter filling
    Calandra, M
    Merino, J
    McKenzie, RH
    PHYSICAL REVIEW B, 2002, 66 (19): : 1 - 5
  • [38] Formation of spin and charge ordering in the extended Hubbard model during a finite-time quantum quench
    Carvalho, Isaac M.
    Braganca, Helena
    Brito, Walber H.
    Aguiar, Maria C. O.
    PHYSICAL REVIEW B, 2022, 106 (19)
  • [39] Competition between antiferromagnetic and charge density wave fluctuations in the extended Hubbard model
    Pudleiner, Petra
    Kauch, Anna
    Held, Karsten
    Li, Gang
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [40] Interplay between charge and spin thermal entanglement in Hubbard dimers
    Souza, Fabiana
    Almeida, Guilherme M. A.
    Lyra, Marcelo L.
    Pereira, Maria S. S.
    PHYSICAL REVIEW A, 2020, 102 (03)