Interplay between charge ordering and superconducting correlations in the extended Hubbard model

被引:1
|
作者
Farkasovsky, Pavol [1 ]
机构
[1] Slovak Acad Sci, Inst Expt Phys, Watsonova 47, Kosice 04001, Slovakia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 09期
关键词
FALICOV-KIMBALL MODEL; ELECTRON CORRELATIONS; STRIPES; HUND; ENHANCEMENT; PHASE; HOLES; SPINS;
D O I
10.1140/epjp/s13360-024-05653-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine effects of charge ordering on superconducting correlations in the extended Hubbard model with Falicov-Kimball coupling in two dimensions. Charge orderings are generated by f-electron distributions on the localized f orbitals, which act as an internal potential for itinerant d electrons moving in the Hubbard d band. For the small finite cluster of L=4x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=4 \times 4$$\end{document} sites the model is studied exactly over the complete set of f-electron distributions, while for larger clusters the projector Quantum-Monte-Carlo method and the reduced set of f-electron distributions (the periodic, phase separated and phase segregated configurations) is used. It is found that the enhancement of superconducting correlations in the d-wave channel depends strongly on the type of f-electron ordering and changes significantly with f and d electron concentration (nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document},nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document}) as well as with interband Coulomb interaction Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document}. In particular, it is found that for small values of Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} the superconducting correlations are the most significantly enhanced for segregated configurations (all f-electrons clump together), for all f-electron concentrations, while for higher d-band fillings axial stripes (bands) with f-electron concentrations nf similar to 0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f \sim 0.5$$\end{document} yield the largest enhancement of superconducting correlations. The region of axial striped phases is systematically reduced with increasing Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} and for sufficiently large Ufd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}$$\end{document} (Ufd similar to 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{fd}\sim 2$$\end{document}) it persists only in the region of small nf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document} and nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_d$$\end{document} values.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Charge ordering and nonlocal correlations in the doped extended Hubbard model
    Terletska, Hanna
    Chen, Tianran
    Paki, Joseph
    Gull, Emanuel
    PHYSICAL REVIEW B, 2018, 97 (11)
  • [2] Charge ordering in the extended Hubbard model
    Pietig, R
    Blawid, S
    Bulla, R
    PHYSICA B-CONDENSED MATTER, 1999, 259-61 : 769 - 770
  • [3] ELECTRON CHARGE ORDERING IN THE EXTENDED HUBBARD-MODEL
    JEDRZEJEWSKI, J
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 48 (03): : 219 - 225
  • [4] Charge ordering in the extended Hubbard model in the ionic limit
    Avella, A
    Mancini, F
    PHYSICA B-CONDENSED MATTER, 2006, 378-80 : 311 - 312
  • [5] Reentrant charge ordering behavior in the extended Hubbard model
    Tuan, HA
    MODERN PHYSICS LETTERS B, 2001, 15 (26): : 1217 - 1224
  • [6] Charge ordering and correlation effects in the extended Hubbard model
    Terletska, Hanna
    Chen, Tianran
    Gull, Emanuel
    PHYSICAL REVIEW B, 2017, 95 (11)
  • [7] Charge ordering under a magnetic field in the extended Hubbard model
    Anh, LD
    Tuan, HA
    Thang, NT
    MODERN PHYSICS LETTERS B, 2003, 17 (20-21): : 1103 - 1110
  • [8] Coherent potential approximation for charge ordering in the extended Hubbard model
    Hoang, AT
    Thalmeier, P
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (26) : 6639 - 6646
  • [9] Spin and charge correlations in the extended Hubbard-Holstein model
    Acquarone, M
    Cuoco, M
    Noce, C
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (9-10): : 1183 - 1188
  • [10] Charge ordering and phase separation in the infinite dimensional extended Hubbard model
    Tong, NH
    Shen, SQ
    Bulla, R
    PHYSICAL REVIEW B, 2004, 70 (08) : 085118 - 1