Ensemble Machine Learning Geostatistical Hybrid Models for Grade Control

被引:0
作者
Erten, Gamze Erdogan [1 ]
Mokdad, Karim [1 ]
da Silva, Camilla Zacche [2 ]
Nisenson, Jed [3 ]
Brandao, Gabriela [3 ]
Boisvert, Jeff [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, 921-116 St NW, Edmonton, AB T6G 1H9, Canada
[2] Nevada Gold Mines, Elko, NV USA
[3] Teck Resources Ltd, Suite 3300,550 Burrard St, Vancouver, BC V6C 0B3, Canada
关键词
Machine learning; Geostatistics; Hybrid modelling; Ensemble; Elliptical radial basis neural network; Locally weighted support vector regression; Kernel density estimated trend; Convolutional neural network; NEURAL-NETWORK; ORE; REGRESSION; ALGORITHMS; PREDICTION;
D O I
10.1007/s11004-024-10172-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Samples collected from densely drilled grade control boreholes are used to create spatial models for ore sorting, classifying material as ore or waste prior to extraction. Geostatistics (typically ordinary kriging) is used to spatially estimate mineral grade at unknown locations; however, hybrid techniques combine geostatistical and machine learning models to take advantage of available dense data and improve overall model performance. There are many different machine learning models; using an ensemble learning-based approach that combines individual models improves estimation accuracy. Two-layer stacked, global, and local weighted ensemble models are proposed. In the two-layer stacking ensemble (SE), the first layer combines n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n $$\end{document} individual models; this work considers four individual models, elliptical radial basis neural network (ERBFN), locally weighted support vector regression (LWSVR), kernel density estimated trend (KDET), and a novel convolutional neural network (CNN). In the second layer, either random forest (RF) or support vector regression (SVR) is trained on outputs of the first layer to generate the final model, which is incorporated into intrinsic collocated cokriging (ICCK) as a secondary variable. The global and local weighting-based ensemble models combine ICCK estimates in which each individual model is considered a secondary variable whose performance is evaluated with cross-validation error. The performance of the ensemble models is compared to inverse distance, ordinary kriging, and hybrid models assessed on 10 blast areas at Teck Resources Limited's Carmen de Andacollo copper mine in Chile. Considering these 10 blasts, ordinary kriging obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} of 0.39, inverse distance obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} of 0.38, and the proposed ensemble approach obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} of 0.67, demonstrating a clear improvement over traditional spatial estimation workflows. The proposed method is fully automated and requires the same amount of professional time as implementing ordinary kriging.
引用
收藏
页码:499 / 522
页数:24
相关论文
共 61 条
  • [1] An intrinsic model of coregionalization that solves variance inflation in collocated cokriging
    Babak, Olena
    Deutsch, Clayton V.
    [J]. COMPUTERS & GEOSCIENCES, 2009, 35 (03) : 603 - 614
  • [2] Breiman L, 1996, MACH LEARN, V24, P49
  • [3] General regression neural network residual estimation for ore grade prediction of limestone deposit
    Chatterjee, S.
    Bandopadhyay, S.
    Ganguli, R.
    Bhattacherjee, A.
    Samanta, B.
    Pal, S. K.
    [J]. TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY SECTION A-MINING TECHNOLOGY, 2007, 116 (03): : 89 - 99
  • [4] Ore Grade Prediction Using a Genetic Algorithm and Clustering Based Ensemble Neural Network Model
    Chatterjee, Snehamoy
    Bandopadhyay, Sukumar
    Machuca, David
    [J]. MATHEMATICAL GEOSCIENCES, 2010, 42 (03) : 309 - 326
  • [5] A Comparative Assessment of Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon Content
    Chen, Lin
    Ren, Chunying
    Li, Lin
    Wang, Yeqiao
    Zhang, Bai
    Wang, Zongming
    Li, Linfeng
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (04):
  • [6] Chiles J.-P., 2009, GEOSTATISTICS MODELI, V497
  • [7] Grade Control with Ensembled Machine Learning: A Comparative Case Study at the Carmen de Andacollo Copper Mine
    da Silva, Camilla Zacche
    Nisenson, Jed
    Boisvert, Jeff
    [J]. NATURAL RESOURCES RESEARCH, 2022, 31 (02) : 785 - 800
  • [8] da Silva CZ, 2023, Geostatistics Toronto 2021: quantitative geology and geostatistics, P37
  • [9] Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau
    Dai, Fuqiang
    Zhou, Qigang
    Lv, Zhiqiang
    Wang, Xuemei
    Liu, Gangcai
    [J]. ECOLOGICAL INDICATORS, 2014, 45 : 184 - 194
  • [10] An Embedded Model Estimator for Non-Stationary Random Functions Using Multiple Secondary Variables
    Daly, Colin
    [J]. MATHEMATICAL GEOSCIENCES, 2022, 54 (05) : 979 - 1015