Modeling of a Continuous Stirred Tank Reactor and Controller Design Using LMI Approaches

被引:0
作者
Cappelletti, Carlos A. [1 ]
Pipino, Hugo A. [2 ]
Bernardi, Emanuel [2 ]
Adam, Eduardo J. [3 ]
机构
[1] Facultad Regional Paraná, Universidad Tecnológica Nacional, Entre Ríos
[2] Facultad Regional San Francisco, Universidad Tecnológica Nacional, Córdoba
[3] Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe
来源
Advanced Control for Applications: Engineering and Industrial Systems | 2025年 / 7卷 / 01期
关键词
CSTR; LMI; multi-model; non-linear systems; process control;
D O I
10.1002/adc2.240
中图分类号
学科分类号
摘要
The design of non-linear control systems remains a challenge today, therefore through this work a procedure to obtain a vertex-reduced multi-model representation, without loss of convexity, is proposed as a suitable solution. That is, a novel approach which considers all parameter variations around the Continuous Stirred Tank Reactor (CSTR) system operating region is developed, resulting in a unique polytopic representation. After that, based on the linear matrix inequalities approach, a control scheme is developed to compute the optimal matrix gains, while the operating, states and inputs, constraints are satisfied and the stability conditions are ensured. Finally, the realistic simulation results highlight the model representation effectiveness in capturing the CSTR dynamic behavior in the operating region, despite parameter variations, allowing the optimal control law design, overcoming the non-linear system nature, to achieve the desired closed-loop system performance. © 2025 John Wiley & Sons Ltd.
引用
收藏
相关论文
共 29 条
[1]  
Adam E.J., Instrumentación y Control de Procesos. Notas de Clase, (2020)
[2]  
Astrom K.J., Murray R.H., Feedback Systems. An Introduction for Scientists and Engineers, (2008)
[3]  
Seborg D.E., Edgar T.F., Mellichamp D.A., Doyle F.J., Process Dynamics and Control, (2011)
[4]  
Maciejowski J.M., Multivariable Feedback Design, (1989)
[5]  
Skogestad S., Postlethwaite I., Multivariable Feedback Control - Analysis and Design, (2005)
[6]  
Toth R., Modeling and Identification of Linear Parameter-Varying Systems, 403, (2010)
[7]  
Mohammadpour J., Scherer C.W., Control of Linear Parameter Varying Systems With Applications, (2012)
[8]  
Morato M.M., Pipino H.A., Bernardi E., Ferreyra D.M., Adam E.J., Normey-Rico J.E., “Sub-Optimal Linear Parameter Varying Model Predictive Control for Solar Collectors,”, 2020
[9]  
Pipino H.A., Morato M.M., Bernardi E., Adam E.J., Normey-Rico J.E., Nonlinear Temperature Regulation of Solar Collectors With a Fast Adaptive Polytopic LPV MPC Formulation, Solar Energy, 209, pp. 214-225, (2020)
[10]  
Mate S., Kodamana H., Bhartiya S., Nataraj P.S.V., A Stabilizing Sub-Optimal Model Predictive Control for Quasi-Linear Parameter Varying Systems, IEEE Control Systems Letters, 4, 2, pp. 402-407, (2019)