Quantum Broadcast Channel Simulation via Multipartite Convex Splitting

被引:0
作者
Berta, Mario [1 ]
Cheng, Hao-Chung [2 ,3 ,4 ,5 ,6 ,7 ]
Gao, Li [8 ]
机构
[1] Rhein Westfal TH Aachen, Inst Quantum Informat, Aachen, Germany
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 106319, Taiwan
[3] Natl Taiwan Univ, Grad Inst Commun Engn, Taipei 106319, Taiwan
[4] Natl Taiwan Univ, Dept Math, Taipei 106319, Taiwan
[5] Natl Taiwan Univ, Ctr Quantum Sci & Engn, Taipei 106319, Taiwan
[6] Natl Ctr Theoret Sci, Phys Div, Taipei 106319, Taiwan
[7] Hon Hai Foxconn Quantum Comp Ctr, New Taipei City 236, Taiwan
[8] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 欧洲研究理事会;
关键词
CLASSICAL CAPACITY; 2ND-ORDER ASYMPTOTICS; CODING THEOREM; INFORMATION; COMMUNICATION; IDENTIFICATION; ENTROPY; BOUNDS; RESOLVABILITY; EXPONENT;
D O I
10.1007/s00220-024-05191-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the communication cost of quantum broadcast channel simulation under free entanglement assistance between the sender and the receivers is asymptotically characterized by an efficiently computable single-letter formula in terms of the channel's multipartite mutual information. Our core contribution is a new one-shot achievability result for multipartite quantum state splitting via multipartite convex splitting. As part of this, we face a general instance of the quantum joint typicality problem with arbitrarily overlapping marginals. The crucial technical ingredient to sidestep this difficulty is a conceptually novel multipartite mean-zero decomposition lemma, together with employing recently introduced complex interpolation techniques for sandwiched R & eacute;nyi divergences. Moreover, we establish an exponential convergence of the simulation error when the communication costs are within the interior of the capacity region. As the costs approach the boundary of the capacity region moderately quickly, we show that the error still vanishes asymptotically.
引用
收藏
页数:44
相关论文
共 133 条
[101]   Classical Codes for Quantum Broadcast Channels [J].
Savov, Ivan ;
Wilde, Mark M. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (12) :7017-7028
[102]   Unions, intersections and a one-shot quantum joint typicality lemma [J].
Sen, Pranab .
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2021, 46 (01)
[103]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[104]   Fundamental Bound on the Reliability of Quantum Information Transmission [J].
Sharma, Naresh ;
Warsi, Naqueeb Ahmad .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[105]  
Shen Y.-C., arXiv
[106]   Simulation of random processes and rate-distortion theory [J].
Steinberg, Y ;
Verdu, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) :63-86
[107]   CHANNEL SIMULATION AND CODING WITH SIDE INFORMATION [J].
STEINBERG, Y ;
VERDU, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (03) :634-646
[108]   Communication for Generating Correlation: A Unifying Survey [J].
Sudan, Madhu ;
Tyagi, Himanshu ;
Watanabe, Shun .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (01) :5-37
[109]  
Tomamichel M., 2015, QUANTUM INF PROCESS, V5, DOI DOI 10.1007/978-3-319-21891-5
[110]   Second-Order Asymptotics for the Classical Capacity of Image-Additive Quantum Channels [J].
Tomamichel, Marco ;
Tan, Vincent Y. F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (01) :103-137