Ulnar variance detection from radiographic images using deep learning

被引:0
作者
Nooh, Sahar [1 ]
Koura, Abdelrahim [1 ]
Kayed, Mohammed [1 ]
机构
[1] Beni Suef Univ, Fac Comp & Artificial Intelligence, Comp Sci Dept, Bani Suwayf, Egypt
关键词
Ulnar variance; Deep learning; CNN; DenseNets; U-Net; Segmentation; WRIST;
D O I
10.1186/s40537-025-01072-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ulnar variance is a relative length difference in the wrist between the ulna and radius bones. It is a critical factor in helping to diagnose wrist disorders. The typical standard classification of length difference (ulnar variance) is divided into three major types: positive ulnar variance, negative ulnar variance, and neutral ulnar variance. Conventional or manual methods of measuring ulnar variance are long and time-consuming. With the urgent need for high efficiency and high speed, achieving more accurate diagnoses has become essential. In this paper, a deep learning-based methodology is used to automatically detect ulnar variance from radiographic images. Advanced Convolutional Neural Networks are exploited instead of traditional manual methods. Specifically, U-Net is used in the segmentation of ulna and radius bones, while DenseNets are applied to classify the type of ulnar variance. The essential contribution of this work is collecting a dataset of fully annotated wrist radiographs that are specific to this topic, which can be used as a resource to train and validate our models. Another contribution of this paper is optimizing the DenseNets model's hyperparameters to enhance its performance. Our model achieved a segmentation accuracy of 97.7% and an ulna variance classification accuracy of 92.1%. It outperformed previous deep learning-based methods in automatically segmenting the ulna and radius. This advancement not only reduces diagnosis time but also improves result reliability.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Fruit recognition from images using deep learning applications
    Harmandeep Singh Gill
    Ganpathy Murugesan
    Baljit Singh Khehra
    Guna Sekhar Sajja
    Gaurav Gupta
    Abhishek Bhatt
    Multimedia Tools and Applications, 2022, 81 : 33269 - 33290
  • [42] Gender Prediction from Images Using Deep Learning Techniques
    Bhat, Salma Fayaz
    Lone, Ab Waheed
    Dar, Taniya Ashraf
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP 2019), 2019,
  • [43] An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures
    Cao, Zhantao
    Duan, Lixin
    Yang, Guowu
    Yue, Ting
    Chen, Qin
    BMC MEDICAL IMAGING, 2019, 19 (1)
  • [44] Denoising and fuel spray droplet detection from light-scattered images using deep learning
    Hasti, Veeraraghava Raju
    Shin, Dongyun
    ENERGY AND AI, 2022, 7
  • [45] Nanoparticle Detection from TEM Images with Deep Learning
    Guven, Gokhan
    Oktay, Ayse Betul
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [46] Development of Detection and Volumetric Methods for the Triceps of the Lower Leg Using Magnetic Resonance Images with Deep Learning
    Asami, Yusuke
    Yoshimura, Takaaki
    Manabe, Keisuke
    Yamada, Tomonari
    Sugimori, Hiroyuki
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [47] Deep Learning based Lightweight Model for Seizure Detection using Spectrogram Images
    Khan, Mohd Maaz
    Khan, Irfan Mabood
    Farooq, Omar
    2022 10TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSICS AND SECURITY (ISDFS), 2022,
  • [48] Detection and classification of cervical cancer images using CEENET deep learning approach
    Subarna, T. G.
    Sukumar, P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3695 - 3707
  • [49] MelaNet: an effective deep learning framework for melanoma detection using dermoscopic images
    Lafraxo, Samira
    El Ansari, Mohamed
    Charfi, Said
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (11) : 16021 - 16045
  • [50] Automatic detection of papilledema through fundus retinal images using deep learning
    Saba, Tanzila
    Akbar, Shahzad
    Kolivand, Hoshang
    Ali Bahaj, Saeed
    MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (12) : 3066 - 3077