Ulnar variance detection from radiographic images using deep learning

被引:0
|
作者
Nooh, Sahar [1 ]
Koura, Abdelrahim [1 ]
Kayed, Mohammed [1 ]
机构
[1] Beni Suef Univ, Fac Comp & Artificial Intelligence, Comp Sci Dept, Bani Suwayf, Egypt
关键词
Ulnar variance; Deep learning; CNN; DenseNets; U-Net; Segmentation; WRIST;
D O I
10.1186/s40537-025-01072-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ulnar variance is a relative length difference in the wrist between the ulna and radius bones. It is a critical factor in helping to diagnose wrist disorders. The typical standard classification of length difference (ulnar variance) is divided into three major types: positive ulnar variance, negative ulnar variance, and neutral ulnar variance. Conventional or manual methods of measuring ulnar variance are long and time-consuming. With the urgent need for high efficiency and high speed, achieving more accurate diagnoses has become essential. In this paper, a deep learning-based methodology is used to automatically detect ulnar variance from radiographic images. Advanced Convolutional Neural Networks are exploited instead of traditional manual methods. Specifically, U-Net is used in the segmentation of ulna and radius bones, while DenseNets are applied to classify the type of ulnar variance. The essential contribution of this work is collecting a dataset of fully annotated wrist radiographs that are specific to this topic, which can be used as a resource to train and validate our models. Another contribution of this paper is optimizing the DenseNets model's hyperparameters to enhance its performance. Our model achieved a segmentation accuracy of 97.7% and an ulna variance classification accuracy of 92.1%. It outperformed previous deep learning-based methods in automatically segmenting the ulna and radius. This advancement not only reduces diagnosis time but also improves result reliability.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] iScan: Detection of Colorectal Cancer from CT Scan Images Using Deep Learning
    Ghosal, Sagnik
    Das, Debanjan
    Rai, Jay Kumar
    Pandaw, Akanksha Singh
    Verma, Sakshi
    ACM TRANSACTIONS ON COMPUTING FOR HEALTHCARE, 2024, 5 (03): : 1 - 22
  • [12] Breast Tumor Detection in Ultrasound Images Using Deep Learning
    Cao, Zhantao
    Duan, Lixin
    Yang, Guowu
    Yue, Ting
    Chen, Qin
    Fu, Huazhu
    Xu, Yanwu
    PATCH-BASED TECHNIQUES IN MEDICAL IMAGING (PATCH-MI 2017), 2017, 10530 : 121 - 128
  • [13] PHOTOVOLTAIC INSTALLATIONS CHANGE DETECTION FROM REMOTE SENSING IMAGES USING DEEP LEARNING
    Shi, Kaiyuan
    Bai, Lu
    Wang, Zhibao
    Tong, Xifeng
    Mulvenna, Maurice D.
    Bond, Raymond R.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3231 - 3234
  • [14] Breast Cancer Detection using Thermal Images and Deep Learning
    Mishra, Sumita
    Prakash, Aditya
    Roy, Sandip Kumar
    Sharan, Preeta
    Mathur, Nidhi
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM-2020), 2019, : 211 - 216
  • [15] OIL SPILL DETECTION FROM SAR IMAGES BY DEEP LEARNING
    Ronci, Federico
    Avolio, Corrado
    di Donna, Mauro
    Zavagli, Massimo
    Piccialli, Veronica
    Costantini, Mario
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2225 - 2228
  • [16] A systematic review of object detection from images using deep learning
    Jaskirat Kaur
    Williamjeet Singh
    Multimedia Tools and Applications, 2024, 83 : 12253 - 12338
  • [17] Perithecia Detection from Images of Stubble using Deep Learning Models
    Azimi, Hilda
    Xi, Pengcheng
    Cuperlovic-Culf, Miroslava
    Vaughan, Martha Marie
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [18] Age Detection from Brain MRI Images Using the Deep Learning
    Siar, Masoumeh
    Teshnehlab, Mohammad
    2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 369 - 374
  • [19] A Deep Learning Approach for the Detection of Neovascularization in Fundus Images Using Transfer Learning
    Tang, Michael Chi Seng
    Teoh, Soo Siang
    Ibrahim, Haidi
    Embong, Zunaina
    IEEE ACCESS, 2022, 10 : 20247 - 20258
  • [20] Automated Defect Detection From Ultrasonic Images Using Deep Learning
    Medak, Duje
    Posilovic, Luka
    Subasic, Marko
    Budimir, Marko
    Loncaric, Sven
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (10) : 3126 - 3134