Fault-Tolerant Self-Timed Counters

被引:0
作者
A. A. Zatsarinny [1 ]
Yu. A. Stepchenkov [1 ]
Yu. G. Diachenko [1 ]
D. V. Khilko [1 ]
G. A. Orlov [1 ]
D. Yu. Diachenko [1 ]
机构
[1] Institute of Informatics Problems, Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Moscow
基金
俄罗斯科学基金会;
关键词
bi-phase signal; binary counter; DICE; fault tolerance; indication; Quatro; self-timed circuits; soft error;
D O I
10.1134/S1063739724700999
中图分类号
学科分类号
摘要
Abstract: The article studies the fault-tolerant self-timed (ST) counter design problem. Combinational ST circuits have a higher fault tolerance in comparison with synchronous counterparts due to redundant information coding and mandatory acknowledgment of all initiated circuit cells’ switch completion. Sequential ST circuits, including counters, are more sensitive to soft errors because a soft error can change a state stored by their memory cells. For their fault-tolerant implementation, special circuitry methods, namely DICE and Quatro, are used. They are similar to the data processing channel duplication, but use transistor cross-connection in the circuit cells. This approach significantly reduces the likelihood of a change in the counter bit’s state due to a soft error. The article proposes DICE-type and Quatro-type ST counter cases, compares their features, and resumes recommendations for the fault-tolerant ST counter implementation. © Pleiades Publishing, Ltd. 2024.
引用
收藏
页码:798 / 802
页数:4
相关论文
共 12 条
[1]  
Viktorova V.C., Lubkov N.V., Stepanyants A.S., Analiz Nadezhnosti Otkazoustoichivykh Upravlyayushchikh vychislitel’nykh Sistem (Reliability Analysis of Fault Tolerant Control Computer Systems), (2016)
[2]  
Artemov A.D., Danilin Y.I., Kuryshev A.V., Et al., Functioning of LSI after proton and neutron impacts, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Vozdeistv. Radioelektron. Appar, 4, pp. 50-56, (2019)
[3]  
Shaven'kov N.K., posobie O.T.I.I.K.U., (Fundamentals of Information Theory and Coding: A Textbook), (2019)
[4]  
Song W., Zhang G., Fault-tolerant asynchronous circuits, Asynchronous On-Chip Networks and Fault-Tolerant Techniques, (2022)
[5]  
Zatsarinny A.A., Stepchenkov Y.A., D'yachenko Y.G., Rozhdestvenski Y.V., Plekhanov L.P., Fault-tolerant selt-timed circuits, Matematicheskoe modelirovanie v materialovedenii elektronnykh komponentov. MMMEK–2022. Materialy IV Mezhdunarodnoi konferentsii (sbornik tezisov) (Mathematical Modeling in Materials Science of Electronic Components. MMMEC-2022: Proceedings of the 4th International Conference (Abstracts)), Abgaryan, K.K., Ed, Moscow: Maks Press, 2022, pp. 176-178
[6]  
Stepchenkov Y.A., Kamenskih A.N., Diachenko Y.G., Rogdestvenski Y.V., Diachenko D.Y., Improvement of the natural self-timed circuit tolerance to short-term soft errors, Advances in Science, Technology and Engineering Systems Journal, 5, pp. 44-56, (2020)
[7]  
Zatsarinny A.A., Stepchenkov, Yu.A., Diachenko, Yu.G., and Rozhdestvenski, Yu.V., Failure tolerant synchronous and selt-tied circuits comparison, Matematicheskoe modelirovanie v materialovedenii elektronnykh komponentov. MMMEK–2021. Materialy III Mezhdunarodnoi konferentsii (sbornik tezisov) (Mathematical Modeling in Materials Science of Electronic Components. MMMEC-2021: Proceedings of the 3rd International Conference (Abstracts)), Abgaryan, K.K., Ed, Moscow: Maks Press, 2021, pp. 154-156
[8]  
Varshavskii V.I.K., M., Marakhovskii, V.B., Peschanskii, V.A., Rozenblyum, L.Ya., Taubin, A.R., and Tsirlin, B.S., Avtomatnoe upravlenie asinkhronnymi protsessami v EVM i diskretnykh sistemakh (Automatic Control of Asynchronous Processes in EM and Discrete Systems), (1986)
[9]  
Ol'chev S.I., Stenin V.Y., CMOS logic elements with increased failure resistance to single-event upsets, Russ. Microelectron, 40, pp. 156-169, (2011)
[10]  
Kumar S.S., Sundaram K., Padmanaban S., Holm-Nielsen J.B., Blaabjerg F., Flip-flop in 45 nm CMOS technology, IET Circuit Devices and Systems, 15, pp. 571-580, (2021)