Evolution and function of chromatin domains across the tree of life

被引:3
作者
Szalay, Michael-Florian [1 ,2 ]
Majchrzycka, Blanka [3 ,4 ]
Jerkovic, Ivana [1 ,2 ]
Cavalli, Giacomo [1 ,2 ]
Ibrahim, Daniel M. [3 ,4 ]
机构
[1] CNRS, Inst Human Genet, Montpellier, France
[2] Univ Montpellier, Montpellier, France
[3] Charite Univ Med Berlin, Ctr Regenerat Therapies, Berlin Inst Hlth, Berlin, Germany
[4] Max Planck Inst Mol Genet, Berlin, Germany
基金
欧洲研究理事会;
关键词
3D GENOME ARCHITECTURE; REGULATORY LANDSCAPE; INTRON SIZE; C REVEALS; COHESIN; ORGANIZATION; CTCF; CHROMOSOME; TRANSCRIPTION; PRINCIPLES;
D O I
10.1038/s41594-024-01427-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genome of all organisms is spatially organized to function efficiently. The advent of genome-wide chromatin conformation capture (Hi-C) methods has revolutionized our ability to probe the three-dimensional (3D) organization of genomes across diverse species. In this Review, we compare 3D chromatin folding from bacteria and archaea to that in mammals and plants, focusing on topology at the level of gene regulatory domains. In doing so, we consider systematic similarities and differences that hint at the origin and evolution of spatial chromatin folding and its relation to gene activity. We discuss the universality of spatial chromatin domains in all kingdoms, each encompassing one to several genes. We also highlight differences between organisms and suggest that similar features in Hi-C matrices do not necessarily reflect the same biological process or function. Furthermore, we discuss the evolution of domain boundaries and boundary-forming proteins, which indicates that structural maintenance of chromosome (SMC) proteins and the transcription machinery are the ancestral sculptors of the genome. Architectural proteins such as CTCF serve as clade-specific determinants of genome organization. Finally, studies in many non-model organisms show that, despite the ancient origin of 3D chromatin folding and its intricate link to gene activity, evolution tolerates substantial changes in genome organization. Szalay et al. discuss cross-kingdom similarities and differences in 3D chromatin folding in relation to gene regulation, including in bacteria, archaea, mammals and plants. This comparison reveals certain factors as ancestral sculptors of the genome, but also that evolution tolerates considerable variety in genome organization.
引用
收藏
页码:1824 / 1837
页数:14
相关论文
共 152 条
[1]   Evolution of 3D chromatin organization at different scales [J].
Acemel, Rafael ;
Lupianez, Dario .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2023, 78
[2]   Differential contribution of steady-state RNA and active transcription in chromatin organization [J].
Barutcu, A. Rasim ;
Blencowe, Benjamin J. ;
Rinn, John L. .
EMBO REPORTS, 2019, 20 (10)
[3]   Genome organization controls transcriptional dynamics during development [J].
Batut, Philippe J. ;
Bing, Xin Yang ;
Sisco, Zachary ;
Raimundo, Joao ;
Levo, Michal ;
Levine, Michael S. .
SCIENCE, 2022, 375 (6580) :566-+
[4]   Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C [J].
Beagrie, Robert A. A. ;
Thieme, Christoph J. J. ;
Annunziatella, Carlo ;
Baugher, Catherine ;
Zhang, Yingnan ;
Schueler, Markus ;
Kukalev, Alexander ;
Kempfer, Rieke ;
Chiariello, Andrea M. M. ;
Bianco, Simona ;
Li, Yichao ;
Davis, Trenton ;
Scialdone, Antonio ;
Welch, Lonnie R. R. ;
Nicodemi, Mario ;
Pombo, Ana .
NATURE METHODS, 2023, 20 (07) :1037-+
[5]   Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation [J].
Benabdallah, Nezha S. ;
Williamson, Iain ;
Illingworth, Robert S. ;
Kane, Lauren ;
Boyle, Shelagh ;
Sengupta, Dipta ;
Grimes, Graeme R. ;
Therizols, Pierre ;
Bickmore, Wendy A. .
MOLECULAR CELL, 2019, 76 (03) :473-+
[6]   The regulatory landscapes of developmental genes [J].
Bolt, Christopher Chase ;
Duboule, Denis .
DEVELOPMENT, 2020, 147 (03)
[7]   Multiscale 3D Genome Rewiring during Mouse Neural Development [J].
Bonev, Boyan ;
Cohen, Netta Mendelson ;
Szabo, Quentin ;
Fritsch, Lauriane ;
Papadopoulos, Giorgio L. ;
Lubling, Yaniv ;
Xu, Xiaole ;
Lv, Xiaodan ;
Hugnot, Jean-Philippe ;
Tanay, Amos ;
Cavalli, Giacomo .
CELL, 2017, 171 (03) :557-+
[8]   CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles [J].
Cavalheiro, Gabriel R. ;
Girardot, Charles ;
Viales, Rebecca R. ;
Pollex, Tim ;
Cao, T. B. Ngoc ;
Lacour, Perrine ;
Feng, Songjie ;
Rabinowitz, Adam ;
Furlong, Eileen E. M. .
SCIENCE ADVANCES, 2023, 9 (05)
[9]   A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state [J].
Cazet, Jack F. ;
Siebert, Stefan ;
Little, Hannah Morris ;
Bertemes, Philip ;
Primack, Abby S. ;
Ladurner, Peter ;
Achrainer, Matthias ;
Fredriksen, Mark T. ;
Moreland, R. Travis ;
Singh, Sumeeta ;
Zhang, Suiyuan ;
Wolfsberg, Tyra G. ;
Schnitzler, Christine E. ;
Baxevanis, Andreas D. ;
Simakov, Oleg ;
Hobmayer, Bert ;
Juliano, Celina E. .
GENOME RESEARCH, 2023, 33 (02) :283-298
[10]   Enhancer-promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness [J].
Chakraborty, Shreeta ;
Kopitchinski, Nina ;
Zuo, Zhenyu ;
Eraso, Ariel ;
Awasthi, Parirokh ;
Chari, Raj ;
Mitra, Apratim ;
Tobias, Ian C. ;
Moorthy, Sakthi D. ;
Dale, Ryan K. ;
Mitchell, Jennifer A. ;
Petros, Timothy J. ;
Rocha, Pedro P. .
NATURE GENETICS, 2023, 55 (02) :280-+