Physics-informed neural networks with hybrid Kolmogorov-Arnold network and augmented Lagrangian function for solving partial differential equations

被引:0
|
作者
Zhang, Zhaoyang [1 ]
Wang, Qingwang [1 ]
Zhang, Yinxing [1 ]
Shen, Tao [1 ]
Zhang, Weiyi [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
[2] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Kolmogorov-Arnold network; Physics-informed neural networks; Augmented Lagrangian function; Partial differential equations; FLOW;
D O I
10.1038/s41598-025-92900-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Physics-informed neural networks (PINNs) have emerged as a fundamental approach within deep learning for the resolution of partial differential equations (PDEs). Nevertheless, conventional multilayer perceptrons (MLPs) are characterized by a lack of interpretability and encounter the spectral bias problem, which diminishes their accuracy and interpretability when used as an approximation function within the diverse forms of PINNs. Moreover, these methods are susceptible to the over-inflation of penalty factors during optimization, potentially leading to pathological optimization with an imbalance between various constraints. In this study, we are inspired by the Kolmogorov-Arnold network (KAN) to address mathematical physics problems and introduce a hybrid encoder-decoder model to tackle these challenges, termed AL-PKAN. Specifically, the proposed model initially encodes the interdependencies of input sequences into a high-dimensional latent space through the gated recurrent unit (GRU) module. Subsequently, the KAN module is employed to disintegrate the multivariate function within the latent space into a set of trainable univariate activation functions, formulated as linear combinations of B-spline functions for the purpose of spline interpolation of the estimated function. Furthermore, we formulate an augmented Lagrangian function to redefine the loss function of the proposed model, which incorporates initial and boundary conditions into the Lagrangian multiplier terms, rendering the penalty factors and Lagrangian multipliers as learnable parameters that facilitate the dynamic modulation of the balance among various constraint terms. Ultimately, the proposed model exhibits remarkable accuracy and generalizability in a series of benchmark experiments, thereby highlighting the promising capabilities and application horizons of KAN within PINNs.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Physics-informed neural networks for solving nonlinear Bloch equations in atomic magnetometry
    Lei, Gaoyi
    Ma, Ning
    Sun, Bowen
    Mao, Kun
    Chen, Baodong
    Zhai, Yueyang
    PHYSICA SCRIPTA, 2023, 98 (08)
  • [32] RBF-Assisted Hybrid Neural Network for Solving Partial Differential Equations
    Li, Ying
    Gao, Wei
    Ying, Shihui
    MATHEMATICS, 2024, 12 (11)
  • [33] Solving nonlinear soliton equations using improved physics-informed neural networks with adaptive mechanisms
    Guo, Yanan
    Cao, Xiaoqun
    Peng, Kecheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (09)
  • [34] Enhanced physics-informed neural networks with Augmented Lagrangian relaxation method (AL-PINNs)
    Son, Hwijae
    Cho, Sung Woong
    Hwang, Hyung Ju
    NEUROCOMPUTING, 2023, 548
  • [35] AIVT: Inference of turbulent thermal convection from measured 3D velocity data by physics-informed Kolmogorov-Arnold networks
    Toscano, Juan Diego
    Kaeufer, Theo
    Wang, Zhibo
    Maxey, Martin
    Cierpka, Christian
    Karniadakis, George Em
    SCIENCE ADVANCES, 2025, 11 (19):
  • [36] A certified wavelet-based physics-informed neural network for the solution of parameterized partial differential equations
    Ernst, Lewin
    Urban, Karsten
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 494 - 515
  • [37] Physics-informed boundary integral networks (PIBI-Nets): A data-driven approach for solving partial differential equations
    Nagy-Huber, Monika
    Roth, Volker
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 81
  • [38] Stochastic physics-informed neural ordinary differential equations
    O'Leary, Jared
    Paulson, Joel A.
    Mesbah, Ali
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 468
  • [39] LaNets: Hybrid Lagrange Neural Networks for Solving Partial Differential Equations
    Li, Ying
    Xu, Longxiang
    Mei, Fangjun
    Ying, Shihui
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (01): : 657 - 672
  • [40] Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
    Ben Moseley
    Andrew Markham
    Tarje Nissen-Meyer
    Advances in Computational Mathematics, 2023, 49