Existence of Semiclassical Ground State Solutions for a Class of N-Laplace Choquard Equation with Critical Exponential Growth

被引:1
作者
Hu, Die [1 ,2 ]
Tang, Xianhua [2 ]
Wei, Jiuyang [2 ]
机构
[1] Fuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R China
[2] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Choquard equation; N-Laplace operator; Critical exponential growth; Positive ground state solutions; Concentration phenomena; LINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS;
D O I
10.1007/s12220-024-01780-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the following N-Laplace Choquard equation {-epsilon(N)Nv+V(x)|v|(N-2)v=epsilon mu-N(|x|-mu & lowast;F(v))f(v),x is an element of RN,u is an element of W1,N(RN), where N >= 2,mu is an element of(0,N),Delta Nv=div(|del v|N-2 del v) is the N-Laplace operator,epsilon is a positive parameter ,V is a differentiable potential,Fis the primitive off with critical exponential growth in the sense of Trudinger-Moser. To address the challenges stemming from the presence of an exponential growth given by fand the quasilinear nature of the equation, we conduct meticulous analyses. This enables us to establish an intricate threshold for the Mountain-Pass minimax level and demonstrate the presence and concentration of semiclassical ground state solutions for the equation in question.
引用
收藏
页数:38
相关论文
共 37 条
[1]   G-invariant positive solutions for a class of locally superlinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
[2]   Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 [J].
Alves, Claudianor O. ;
Cassani, Daniele ;
Tarsi, Cristina ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1933-1972
[3]   Existence of semiclassical ground state solutions for a generalized Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) :4133-4164
[4]   On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1288-1311
[5]  
Baldelli L, 2024, NODEA-NONLINEAR DIFF, V31, DOI 10.1007/s00030-023-00897-1
[6]   SINGULAR QUASILINEAR CRITICAL SCHRODINGER EQUATIONS IN RN [J].
Baldelli, Laura ;
Filippucci, Roberta .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (08) :2561-2586
[7]   Quasilinear Choquard equations involving N-Laplacian and critical exponential nonlinearity [J].
Biswas, Reshmi ;
Goyal, Sarika ;
Sreenadh, Konijeti .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) :9483-9503
[8]  
Boer E.S., 2021, ARXIV
[9]  
Bucur C, 2022, Arxiv, DOI arXiv:2201.00159
[10]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435