Dynamics of Slow-Fast Hamiltonian Systems: The Saddle-Focus Case

被引:0
作者
Bolotin, Sergey V. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
关键词
Hamiltonian system; homoclinic orbit; Poincar & eacute; function; separatrix map; SEPARATRIX MAPS; HOMOCLINIC SET; TRAJECTORIES; RESONANCE; ENERGY;
D O I
10.1134/S1560354724590039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamics of a multidimensional slow-fast Hamiltonian system in a neighborhood of the slow manifold under the assumption that the frozen system has a hyperbolic equilibrium with complex simple leading eigenvalues and there exists a transverse homoclinic orbit. We obtain formulas for the corresponding Shilnikov separatrix map and prove the existence of trajectories in a neighborhood of the homoclinic set with a prescribed evolution of the slow variables. An application to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} body problem is given.
引用
收藏
页码:76 / 92
页数:17
相关论文
共 23 条
[1]  
Arnold VI., 2006, Mathematical Aspects of Classical and Celestial Mechanics, V3rd
[2]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[3]  
Bolotin SV, 2015, RUSS MATH SURV+, V70, P975, DOI [10.1070/RM2015v070n06ABEH004972, 10.4213/rm9692]
[4]   Separatrix Maps in Slow-Fast Hamiltonian Systems [J].
Bolotin, Sergey V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 322 (01) :32-51
[5]  
Bolotin SV, 2020, P STEKLOV I MATH+, V310, P12, DOI [10.1134/S0081543820050028, 10.4213/tm4119]
[6]   Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System [J].
Bolotin, Sergey V. .
REGULAR & CHAOTIC DYNAMICS, 2019, 24 (06) :682-703
[7]   Geometric shadowing in slow-fast Hamiltonian systems [J].
Brannstrom, Niklas ;
de Simone, Emiliano ;
Gelfreich, Vassili .
NONLINEARITY, 2010, 23 (05) :1169-1184
[8]  
Buffoni B, 1996, COMMUN PUR APPL MATH, V49, P285, DOI 10.1002/(SICI)1097-0312(199603)49:3<285::AID-CPA3>3.3.CO
[9]  
2-#
[10]   Computer assisted proofs for transverse collision and near collision orbits in the restricted three body problem [J].
Capinski, Maciej J. ;
Kepley, Shane ;
James, J. D. Mireles .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 366 :132-191