Stability of Sharp Fourier Restriction to Spheres

被引:1
作者
Carneiro, Emanuel [1 ]
Negro, Giuseppe [2 ]
Oliveira e Silva, Diogo [2 ]
机构
[1] ICTP Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] Inst Super Tecn, Dept Matemat, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
基金
英国工程与自然科学研究理事会;
关键词
Sharp Fourier restriction theory; Stability; Sphere; Maximizers; Perturbation; Spherical harmonics; Gegenbauer polynomials; KLEIN-GORDON EQUATION; STRICHARTZ INEQUALITY; FLOW MONOTONICITY; BILINEAR ESTIMATE; WAVE-EQUATION; EXTREMIZERS; MAXIMIZERS; EXISTENCE; THEOREM; EXTREMALS;
D O I
10.1007/s00041-024-10120-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In dimensions d is an element of{3,4,5,6,7}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in \{3,4,5,6,7\}$$\end{document}, we prove that the constant functions on the unit sphere Sd-1 subset of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}<^>{d-1}\subset \mathbb {R}<^>d$$\end{document} maximize the weighted adjoint Fourier restriction inequality integral Rd|f sigma<^>(x)|4(1+g(x))dx1/4 <= C & Vert;f & Vert;L2(Sd-1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \int _{\mathbb {R}<^>d} |\widehat{f\sigma }(x)|<^>4\,\big (1 + g(x)\big )\,\textrm{d}x\right| <^>{1/4} \leqslant \textbf{C} \, \Vert f\Vert _{L<^>2(\mathbb {S}<^>{d-1})}, \end{aligned}$$\end{document}where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the surface measure on Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}<^>{d-1}$$\end{document}, for a suitable class of bounded perturbations g:Rd -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:\mathbb {R}<^>d \rightarrow \mathbb {C}$$\end{document}. In such cases we also fully classify the complex-valued maximizers of the inequality. In the unperturbed setting (g=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g = \textbf{0}$$\end{document}), this was established by Foschi (d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}) and by the first and third authors (d is an element of{4,5,6,7}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in \{4,5,6,7\}$$\end{document}) in 2015. Our methods also yield a new sharp adjoint restriction inequality on S7 subset of R8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S<^>7\subset \mathbb {R}<^>8$$\end{document}.
引用
收藏
页数:52
相关论文
共 60 条
[31]   LOCAL MAXIMIZERS OF ADJOINT FOURIER RESTRICTION ESTIMATES FOR THE CONE, PARABOLOID AND SPHERE [J].
Goncalves, Felipe ;
Negro, Giuseppe .
ANALYSIS & PDE, 2022, 15 (04) :1096-1130
[32]   A sharpened Strichartz inequality for radial functions [J].
Goncalves, Felipe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (06) :1925-1947
[33]   Orthogonal Polynomials and Sharp Estimates for the Schrodinger Equation [J].
Goncalves, Felipe .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (08) :2356-2383
[34]   On sharp strichartz inequalities in low dimensions [J].
Hundertmark, Dirk ;
Zharnitsky, Vadim .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
[35]   Analyticity of extremizers to the Airy-Strichartz inequality [J].
Hundertmark, Dirk ;
Shao, Shuanglin .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 :336-352
[36]  
Jeavons C, 2014, DIFFER INTEGRAL EQU, V27, P137
[37]   On the existence of a maximizer for the Strichartz inequality [J].
Kunze, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (01) :137-162
[38]  
Negro G., 2023, Harmonic analysis and convexity , Advances in Analysis and Geometry, V9, P391
[39]   A SHARPENED STRICHARTZ INEQUALITY FOR THE WAVE EQUATION [J].
Negro, Giuseppe .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (06) :1685-1708
[40]   Smoothness of solutions of a convolution equation of restricted type on the sphere [J].
Oliveira e Silva, Diogo ;
Quilodran, Rene .
FORUM OF MATHEMATICS SIGMA, 2021, 9