Stability of Sharp Fourier Restriction to Spheres

被引:1
作者
Carneiro, Emanuel [1 ]
Negro, Giuseppe [2 ]
Oliveira e Silva, Diogo [2 ]
机构
[1] ICTP Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] Inst Super Tecn, Dept Matemat, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
基金
英国工程与自然科学研究理事会;
关键词
Sharp Fourier restriction theory; Stability; Sphere; Maximizers; Perturbation; Spherical harmonics; Gegenbauer polynomials; KLEIN-GORDON EQUATION; STRICHARTZ INEQUALITY; FLOW MONOTONICITY; BILINEAR ESTIMATE; WAVE-EQUATION; EXTREMIZERS; MAXIMIZERS; EXISTENCE; THEOREM; EXTREMALS;
D O I
10.1007/s00041-024-10120-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In dimensions d is an element of{3,4,5,6,7}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in \{3,4,5,6,7\}$$\end{document}, we prove that the constant functions on the unit sphere Sd-1 subset of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}<^>{d-1}\subset \mathbb {R}<^>d$$\end{document} maximize the weighted adjoint Fourier restriction inequality integral Rd|f sigma<^>(x)|4(1+g(x))dx1/4 <= C & Vert;f & Vert;L2(Sd-1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \int _{\mathbb {R}<^>d} |\widehat{f\sigma }(x)|<^>4\,\big (1 + g(x)\big )\,\textrm{d}x\right| <^>{1/4} \leqslant \textbf{C} \, \Vert f\Vert _{L<^>2(\mathbb {S}<^>{d-1})}, \end{aligned}$$\end{document}where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the surface measure on Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}<^>{d-1}$$\end{document}, for a suitable class of bounded perturbations g:Rd -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:\mathbb {R}<^>d \rightarrow \mathbb {C}$$\end{document}. In such cases we also fully classify the complex-valued maximizers of the inequality. In the unperturbed setting (g=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g = \textbf{0}$$\end{document}), this was established by Foschi (d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}) and by the first and third authors (d is an element of{4,5,6,7}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in \{4,5,6,7\}$$\end{document}) in 2015. Our methods also yield a new sharp adjoint restriction inequality on S7 subset of R8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S<^>7\subset \mathbb {R}<^>8$$\end{document}.
引用
收藏
页数:52
相关论文
共 60 条
  • [1] Abramowitz M. A., 1965, HDB MATH FUNCTIONS
  • [2] BABENKO K. I., 1962, IZV AKAD NAUK SSSR M, V25, P115
  • [3] Weighted estimates for the Helmholtz equation and some applications
    Barcelo, JA
    Ruiz, A
    Vega, L
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 150 (02) : 356 - 382
  • [4] Band-Limited Maximizers for a Fourier Extension Inequality on the Circle, II
    Barker, James
    Thiele, Christoph
    Zorin-Kranich, Pavel
    [J]. EXPERIMENTAL MATHEMATICS, 2023, 32 (02) : 280 - 293
  • [5] INEQUALITIES IN FOURIER-ANALYSIS
    BECKNER, W
    [J]. ANNALS OF MATHEMATICS, 1975, 102 (01) : 159 - 182
  • [6] Bilinear identities involving the k-plane transform and Fourier extension operators
    Beltran, David
    Vega, Luis
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 3349 - 3377
  • [7] Flow Monotonicity and Strichartz Inequalities
    Bennett, Jonathan
    Bez, Neal
    Iliopoulou, Marina
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (19) : 9415 - 9437
  • [8] HEAT-FLOW MONOTONICITY OF STRICHARTZ NORMS
    Bennett, Jonathan
    Bez, Neal
    Carbery, Anthony
    Hundertmark, Dirk
    [J]. ANALYSIS & PDE, 2009, 2 (02): : 147 - 158
  • [9] Extremisers for the trace theorem on the sphere
    Bez, Neal
    Machihara, Shuji
    Sugimoto, Mitsuru
    [J]. MATHEMATICAL RESEARCH LETTERS, 2016, 23 (03) : 633 - 647
  • [10] Applications of the Funk-Hecke theorem to smoothing and trace estimates
    Bez, Neal
    Saito, Hiroki
    Sugimoto, Mitsuru
    [J]. ADVANCES IN MATHEMATICS, 2015, 285 : 1767 - 1795