Predicting tool life and sound pressure levels in dry turning using machine learning models

被引:3
作者
de Souza, Alex Fernandes [1 ]
Verri, Filipe Alves Neto [2 ]
Campos, Paulo Henrique da Silva [1 ]
Balestrassi, Pedro Paulo [1 ]
机构
[1] Univ Fed Itajuba, Inst Ind Engn & Management, 1303 BPS Ave,100190, BR-37500903 Itajuba, Brazil
[2] Technol Inst Aeronaut, Div Comp Sci, Sq Marechal Eduardo Gomes,50-Vila Acacias, BR-12228900 Sao Jose Dos Campos, SP, Brazil
关键词
Dry machining; Tool life; Prediction; Machine learning; Green manufacturing; RANDOM FOREST; SURFACE-ROUGHNESS; REGRESSION;
D O I
10.1007/s00170-024-14689-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dry turning reduces the environmental impact and costs associated with cutting fluids, but it challenges the optimization of tool life due to the generated heat. This study evaluated machine learning models to predict tool life (T) during the dry turning of AISI H13 steel by analyzing cutting speed (Vc), feed rate (f), and depth of cut (ap). Nineteen experiments were conducted using a central composite design (CCD), evaluating machining cost, tool life, sound pressure level (SPL), chip removal rate, and machining force. Statistical analysis included calculations of central tendency, dispersion, and Pearson correlation. Five machine learning models were compared: linear regression, decision tree regression, random forest regression, multi-layer perceptron (MLP) regression, and stochastic gradient descent (SGD) regression. The evaluation metrics were MSE, RMSE, and R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document}. The random forest and stochastic gradient descent models proved to be promising. The random forest model stood out with high R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} values, indicating greater precision. Linear regression and stochastic gradient descent also performed well in predicting sound pressure levels. The consistency of the random forest model in both training/testing and prediction phases highlights its robustness and adaptability to different tools and machining setups. In contrast, the multi-layer perceptron model exhibited greater variability, reflecting its sensitivity to hyperparameter settings. The results demonstrate the effectiveness of the random forest model in predicting tool life, contributing to reduced operational costs and increased manufacturing efficiency.
引用
收藏
页码:3777 / 3793
页数:17
相关论文
共 71 条
[1]   Precision Face Milling of Maraging Steel 350: An Experimental Investigation and Optimization Using Different Machine Learning Techniques [J].
Abbas, Adel T. ;
Helmy, Mohamed O. ;
Al-Abduljabbar, Abdulhamid A. ;
Soliman, Mahmoud S. ;
Hasan, Ali S. ;
Elkaseer, Ahmed .
MACHINES, 2023, 11 (11)
[2]   Artificial Neural Networks Based Optimization Techniques: A Review [J].
Abdolrasol, Maher G. M. ;
Hussain, S. M. Suhail ;
Ustun, Taha Selim ;
Sarker, Mahidur R. ;
Hannan, Mahammad A. ;
Mohamed, Ramizi ;
Ali, Jamal Abd ;
Mekhilef, Saad ;
Milad, Abdalrhman .
ELECTRONICS, 2021, 10 (21)
[3]   Experimental Analysis of Methods Used to Solve Linear Regression Models [J].
Abu-Faraj, Mua'ad ;
Al-Hyari, Abeer ;
Alqadi, Ziad .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03) :5699-5712
[4]   Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees [J].
Ahmad, Muhammad Waseem ;
Reynolds, Jonathan ;
Rezgui, Yacine .
JOURNAL OF CLEANER PRODUCTION, 2018, 203 :810-821
[5]   Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization [J].
Alajmi, Mahdi S. ;
Almeshal, Abdullah M. .
MATERIALS, 2021, 14 (14)
[6]   CNN based tool monitoring system to predict life of cutting tool [J].
Ambadekar, P. K. ;
Choudhari, C. M. .
SN APPLIED SCIENCES, 2020, 2 (05)
[7]   Context Deep Neural Network Model for Predicting Depression Risk Using Multiple Regression [J].
Baek, Ji-Won ;
Chung, Kyungyong .
IEEE ACCESS, 2020, 8 :18171-18181
[8]   Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression [J].
Balogun, Abdul-Lateef ;
Tella, Abdulwaheed .
CHEMOSPHERE, 2022, 299
[9]  
Bayraktar S., 2021, Sustain Manuf, DOI [10.1016/B978-0-12-818115-7.00004-3, DOI 10.1016/B978-0-12-818115-7.00004-3]
[10]  
Bertsimas D, 2017, 2017 IEEE MIT UND RE, P1, DOI [10.1109/URTC.2017.8284195, DOI 10.1109/URTC.2017.8284195]