Enhancing deep learning methods for brain metastasis detection through cross-technique annotations on SPACE MRI

被引:0
作者
Wald, Tassilo [1 ,2 ,3 ]
Hamm, Benjamin [1 ,4 ]
Holzschuh, Julius C. [5 ]
El Shafie, Rami [6 ,7 ]
Kudak, Andreas [6 ,8 ,9 ]
Kovacs, Balint [1 ,4 ]
Pflueger, Irada [10 ,11 ]
von Nettelbladt, Bastian [6 ,8 ,12 ,13 ,14 ]
Ulrich, Constantin [1 ,4 ,12 ]
Baumgartner, Michael Anton [1 ,2 ,3 ]
Vollmuth, Philipp [10 ,11 ,15 ,16 ]
Debus, Juergen [6 ,8 ,9 ,12 ,13 ,14 ]
Maier-Hein, Klaus H. [1 ,2 ,3 ,12 ,17 ,18 ]
Welzel, Thomas [6 ,8 ,12 ,13 ,14 ]
机构
[1] German Canc Res Ctr DKFZ Heidelberg, Div Med Image Comp, Heidelberg, Germany
[2] German Canc Res Ctr, Helmholtz Imaging, Heidelberg, Germany
[3] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[4] Heidelberg Univ, Med Fac Heidelberg, Heidelberg, Germany
[5] German Canc Res Ctr, Div Radiol, Heidelberg, Germany
[6] Heidelberg Univ Hosp, Dept Radiat Oncol, Heidelberg, Germany
[7] Univ Hosp Gottingen, Dept Radiat Oncol, Gottingen, Germany
[8] Heidelberg Inst Radiat Oncol HIRO, Heidelberg, Germany
[9] German Canc Res Ctr, DKFZ Clin Cooperat Unit Radiat Oncol, Heidelberg, Germany
[10] Heidelberg Univ Hosp, Dept Neuroradiol, Heidelberg, Germany
[11] Heidelberg Univ Hosp, Div Computat Neuroimaging, Heidelberg, Germany
[12] NCT Heidelberg, Natl Ctr Tumor Dis NCT, Heidelberg, Germany
[13] German Canc Consortium DKTK, Partner Site Heidelberg, Heidelberg, Germany
[14] Heidelberg Univ Hosp, Heidelberg Ion Beam Therapy Ctr HIT, Dept Radiat Oncol, Heidelberg, Germany
[15] Univ Hosp Bonn, Div Computat Radiol Clin CCIBonn ai, Clin Neuroradiol, Bonn, Germany
[16] Univ Bonn, Med Fac Bonn, Bonn, Germany
[17] Heidelberg Univ Hosp, Pattern Anal & Learning Grp, Radiat Oncol, Heidelberg, Germany
[18] German Ctr Lung Res DZL, Translat Lung Res Ctr Heidelberg, Heidelberg, Germany
关键词
Brain neoplasms; Deep learning; Image interpretation (computer-assisted); Image processing (computer-assisted); Magnetic resonance imaging; STEREOTACTIC RADIOSURGERY;
D O I
10.1186/s41747-025-00554-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Gadolinium-enhanced "sampling perfection with application-optimized contrasts using different flip angle evolution" (SPACE) sequence allows better visualization of brain metastases (BMs) compared to "magnetization-prepared rapid acquisition gradient echo" (MPRAGE). We hypothesize that this better conspicuity leads to high-quality annotation (HAQ), enhancing deep learning (DL) algorithm detection of BMs on MPRAGE images. Methods Retrospective contrast-enhanced (gadobutrol 0.1 mmol/kg) SPACE and MPRAGE data of 157 patients with BM were used, either annotated on MPRAGE resulting in normal annotation quality (NAQ) or on coregistered SPACE resulting in HAQ. Multiple DL methods were developed with NAQ or HAQ using either SPACE or MRPAGE images and evaluated on their detection performance using positive predictive value (PPV), sensitivity, and F1 score and on their delineation performance using volumetric Dice similarity coefficient, PPV, and sensitivity on one internal and four additional test datasets (660 patients). Results The SPACE-HAQ model reached 0.978 PPV, 0.882 sensitivity, and 0.916 F1-score. The MPRAGE-HAQ reached 0.867, 0.839, and 0.840, the MPRAGE NAQ 0.964, 0.667, and 0.798, respectively (p >= 0.157). Relative to MPRAGE-NAQ, the MPRAGE-HAQ F1-score detection increased on all additional test datasets by 2.5-9.6 points (p < 0.016) and sensitivity improved on three datasets by 4.6-8.5 points (p < 0.001). Moreover, volumetric instance sensitivity improved by 3.6-7.6 points (p < 0.001). Conclusion HAQ improves DL methods without specialized imaging during application time. HAQ alone achieves about 40% of the performance improvements seen with SPACE images as input, allowing for fast and accurate, fully automated detection of small (< 1 cm) BMs. Relevance statement Training with higher-quality annotations, created using the SPACE sequence, improves the detection and delineation sensitivity of DL methods for the detection of brain metastases (BMs)on MPRAGE images. This MRI cross-technique transfer learning is a promising way to increase diagnostic performance.
引用
收藏
页数:14
相关论文
共 36 条
[1]   Brain metastases [J].
Achrol, Achal Singh ;
Rennert, Robert C. ;
Anders, Carey ;
Soffietti, Riccardo ;
Ahluwalia, Manmeet S. ;
Nayak, Lakshmi ;
Peters, Solange ;
Arvold, Nils D. ;
Harsh, Griffith R. ;
Steeg, Patricia S. ;
Chang, Steven D. .
NATURE REVIEWS DISEASE PRIMERS, 2019, 5 (1)
[2]   BRAIN METASTASES - COMPARISON OF GADODIAMIDE INJECTION-ENHANCED MR-IMAGING AT STANDARD AND HIGH-DOSE, CONTRAST-ENHANCED CT AND NON-CONTRAST-ENHANCED MR-IMAGING [J].
AKESON, P ;
LARSSON, EM ;
KRISTOFFERSEN, DT ;
JONSSON, E ;
HOLTAS, S .
ACTA RADIOLOGICA, 1995, 36 (03) :300-306
[3]   Post-contrast 3D T1-weighted TSE MR sequences (SPACE, CUBE, VISTA/BRAINVIEW, isoFSE, 3D MVOX): Technical aspects and clinical applications [J].
Bapst, Blanche ;
Amegnizin, Jean-Louis ;
Vignaud, Alexandre ;
Kauv, Paul ;
Maraval, Anne ;
Kalsoum, Erwah ;
Tuilier, Titien ;
Benaissa, Azzedine ;
Brugieres, Pierre ;
Leclerc, Xavier ;
Hodel, Jerome .
JOURNAL OF NEURORADIOLOGY, 2020, 47 (05) :360-370
[4]   Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data [J].
Bousabarah, Khaled ;
Ruge, Maximilian ;
Brand, Julia-Sarita ;
Hoevels, Mauritius ;
Ruess, Daniel ;
Borggrefe, Jan ;
Hokamp, Nils Grosse ;
Visser-Vandewalle, Veerle ;
Maintz, David ;
Treuer, Harald ;
Kocher, Martin .
RADIATION ONCOLOGY, 2020, 15 (01)
[5]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[6]   Time-delayed contrast-enhanced MRI improves detection of brain metastases: a prospective validation of diagnostic yield [J].
Cohen-Inbar, Or ;
Xu, Zhiyuan ;
Dodson, Blair ;
Rizvi, Tanvir ;
Durst, Christopher R. ;
Mukherjee, Sugoto ;
Sheehan, Jason P. .
JOURNAL OF NEURO-ONCOLOGY, 2016, 130 (03) :485-494
[7]   Brain Tumor-Enhancement Visualization and Morphometric Assessment: A Comparison of MPRAGE, SPACE, and VIBE MRI Techniques [J].
Danieli, L. ;
Riccitelli, G. C. ;
Distefano, D. ;
Prodi, E. ;
Ventura, E. ;
Cianfoni, A. ;
Kaelin-Lang, A. ;
Reinert, M. ;
Pravata, E. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (07) :1140-1148
[8]  
El Shafie R., 2023, International Journal of Radiation Oncology, Biology, Physics, pe8, DOI 10.1016/j.ijrobp.2023.08.036
[9]   Robotic Radiosurgery for Brain Metastases Diagnosed With Either SPACE or MPRAGE Sequence (CYBER-SPACE)-A Single-Center Prospective Randomized Trial [J].
El Shafie, Rami A. ;
Paul, Angela ;
Bernhardt, Denise ;
Lang, Kristin ;
Welzel, Thomas ;
Sprave, Tanja ;
Hommertgen, Adriane ;
Krisam, Johannes ;
Schmitt, Daniela ;
Klueter, Sebastian ;
Schubert, Kai ;
Klose, Christina ;
Kieser, Meinhard ;
Debus, Juergen ;
Rieken, Stefan .
NEUROSURGERY, 2019, 84 (01) :253-260
[10]   Deep Learning Enables Automatic Detection and Segmentation of Brain Metastases on Multisequence MRI [J].
Grovik, Endre ;
Yi, Darvin ;
Iv, Michael ;
Tong, Elizabeth ;
Rubin, Daniel ;
Zaharchuk, Greg .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (01) :175-182