The Operator Group Generated by the One-dimensional Dirac System

被引:0
|
作者
Savchuk, A. M. [1 ]
Sadovnichaya, I. V. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
关键词
Dirac operator; summable potential; operator group; equivalent bases; SPECTRAL DECOMPOSITIONS; EQUICONVERGENCE;
D O I
10.1134/S1995080224605174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space H = (L-2[0, pi])(2). The potential is assumed to be summable. It is proved that this group is well-defined in the space H and in the spaces (L-mu[0, pi])(2), mu is an element of(1, infinity). In addition, we discuss estimates for the growth of the group as |t| -> +infinity.
引用
收藏
页码:4582 / 4598
页数:17
相关论文
共 50 条
  • [1] Operator Group Generated by a One-Dimensional Dirac System
    A. M. Savchuk
    I. V. Sadovnichaya
    Doklady Mathematics, 2023, 108 : 490 - 492
  • [2] Operator Group Generated by a One-Dimensional Dirac System
    Savchuk, A. M.
    Sadovnichaya, I. V.
    DOKLADY MATHEMATICS, 2023, 108 (03) : 490 - 492
  • [3] The eigenvalue problem of one-dimensional Dirac operator
    Karwowski, Jacek
    Ishkhanyan, Artur
    Poszwa, Andrzej
    THEORETICAL CHEMISTRY ACCOUNTS, 2020, 139 (12)
  • [4] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Daniel M. Elton
    Michael Levitin
    Iosif Polterovich
    Annales Henri Poincaré, 2014, 15 : 2321 - 2377
  • [5] On the existence of eigenvalues of a one-dimensional Dirac operator
    Sanchez-Mendoza, Daniel
    Winklmeier, Monika
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (02)
  • [6] The eigenvalue problem of one-dimensional Dirac operator
    Jacek Karwowski
    Artur Ishkhanyan
    Andrzej Poszwa
    Theoretical Chemistry Accounts, 2020, 139
  • [7] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Elton, Daniel M.
    Levitin, Michael
    Polterovich, Iosif
    ANNALES HENRI POINCARE, 2014, 15 (12): : 2321 - 2377
  • [8] On the oscillation of eigenvector functions of the one-dimensional Dirac operator
    Aliev, Z. S.
    Rzaeva, Kh. Sh.
    DOKLADY MATHEMATICS, 2016, 94 (01) : 401 - 405
  • [9] On the oscillation of eigenvector functions of the one-dimensional Dirac operator
    Z. S. Aliev
    Kh. Sh. Rzaeva
    Doklady Mathematics, 2016, 94 : 401 - 405
  • [10] On the basis property of the system of eigenfunctions and associated functions of a one-dimensional Dirac operator
    Savchuk, A. M.
    IZVESTIYA MATHEMATICS, 2018, 82 (02) : 351 - 376