Structure of some additive maps in prime rings with involution

被引:0
作者
Mohammad Aslam Siddeeque [1 ]
Abbas Hussain Shikeh [1 ]
Raof Ahmad Bhat [1 ]
机构
[1] Department of Mathematics, Aligarh Muslim University, Aligarh
关键词
Derivation; Involution; Prime ring;
D O I
10.1007/s11565-025-00580-6
中图分类号
学科分类号
摘要
Let R be a noncommutative prime ring equipped with an involution ‘∗’, and let Qml(R) be the maximal left ring of quotients of R. The objective of this paper is to characterize additive maps H:R→Qml(R) that satisfy any one of the following conditions. (i) H(srs)=H(s)s∗r∗+sH(r)s∗+srH(s) for all s,r∈R. (ii) H(s∗s)=H(s∗)s+s∗H(s) for all s∈R. © The Author(s) under exclusive license to Università degli Studi di Ferrara 2025.
引用
收藏
相关论文
共 27 条
[1]  
Amitsur S.A., Extension of derivations to central simple algebras, Commun. Algebra, 10, 8, pp. 797-803, (1982)
[2]  
Ashraf M., Siddeeque M.A., On ∗-n derivations in prime rings with involution, Georgian Math. J, 22, 1, pp. 9-18, (2015)
[3]  
Beidar K.I., Martindale W.S., III., Mikhalev, A.V.: Rings with generalized identities. Pure and Applied Mathematics, (1996)
[4]  
Beidar K.I., Martindale W.S., On functional identities in prime rings with involution, J. Algebra, 203, 2, pp. 491-532, (1998)
[5]  
Bresar M., Chebotar M.A., Martindale W.S., III.: Functional Identities, Frontiers in Mathematics, (2007)
[6]  
Bresar M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc, 104, pp. 1003-1006, (1988)
[7]  
Bresar M., Jordan mappings of semiprime rings, J. Algebra, 127, pp. 218-228, (1989)
[8]  
Bresar M., Vukman J., On some additive mappings in rings with involution, Aequationes Math, 38, pp. 178-185, (1989)
[9]  
Fosner M., Marcen B., Sirovnik N., On certain identity related to Herstein theorem on Jordan derivations, Mediterr. J. Math, 13, pp. 537-556, (2016)
[10]  
Fosner M., Marcen B., Vukman J., A result in the spirit of Herstein theorem, Glas. Mat. Ser, III, 53, pp. 73-95, (2018)