Achieving Superhardness and Enhanced Toughness in High-Entropy Boride-Based Composites by Tailoring Their Multi-Scale Microstructures

被引:3
作者
Qiu, Shuaihang [1 ,2 ]
Zou, Ji [1 ,2 ]
Liu, Jingjing [1 ,2 ]
Wang, Weimin [1 ,2 ]
Xie, Jingjing [1 ,2 ]
Ji, Wei [1 ,2 ]
Wu, Jinsong [1 ]
Zhou, Yanchun [3 ]
Fu, Zhengyi [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Hubei Longzhong Lab, Xiangyang 441000, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
boride; high-entropy ceramics; microstructure tailoring; reactive sintering; superhard ceramics; LOW THERMAL-CONDUCTIVITY; HIGH-STRENGTH; DENSIFICATION; DUCTILITY; CERAMICS; ALLOYS; OXYGEN;
D O I
10.1002/smll.202404632
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Unlike strong yet tough high entropy alloys, high entropy ceramics normally exhibit good hardness but poor strength and fracture toughness. To overcome this obstacle, B4C-(Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)B-2 composites with a unique hierarchical microstructure are designed and prepared by boronizing reaction sintering of dual-phase multicomponent carbides. In the as-obtained composites, massive platelet-like aggregations assembled by core-rim structured (Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)B-2 fine grains are distributed randomly in the B4C matrix. Such special microstructure makes B4C-(Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)B-2 composites exhibit excellent mechanical properties. An extra toughening mechanism of crack bridging is provided in as-obtained composites (fracture toughness of 4.70 +/- 0.08 MPa m(1/2)) by the interaction between cracks and platelet-like diboride aggregations whilst fine-grained microstructures guarantee high flexural strength (633 +/- 25 MPa). More importantly, during producing indents, homogenization of core-rim structured (Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)B-2 alongside more difficult lattice glides caused by short-range ordering and rough glide planes containing different-dimension transition metal atoms cooperatively induce increased indentation volume work and consequently unparalleled Vickers hardness (>54 GPa at 1.96 N), which is confirmed by in-depth transmission electron microscopy characterizations. This work gives a new inspiration to design high-performance high-entropy ceramics via multi-scale microstructure tailoring and composition tuning.
引用
收藏
页数:18
相关论文
共 79 条
[1]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[2]   Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction [J].
Baek, Jihyun ;
Hossain, Md Delowar ;
Mukherjee, Pinaki ;
Lee, Junghwa ;
Winther, Kirsten T. ;
Leem, Juyoung ;
Jiang, Yue ;
Chueh, William C. ;
Bajdich, Michal ;
Zheng, Xiaolin .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Processing and properties of monolithic TiB2 based materials [J].
Basu, B. ;
Raju, G. B. ;
Suri, A. K. .
INTERNATIONAL MATERIALS REVIEWS, 2006, 51 (06) :352-374
[4]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[5]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[6]   Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides [J].
Braun, Jeffrey L. ;
Rost, Christina M. ;
Lim, Mina ;
Giri, Ashutosh ;
Olson, David H. ;
Kotsonis, George N. ;
Stan, Gheorghe ;
Brenner, Donald W. ;
Maria, Jon-Paul ;
Hopkins, Patrick E. .
ADVANCED MATERIALS, 2018, 30 (51)
[7]   Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J].
Bu, Yeqiang ;
Wu, Yuan ;
Lei, Zhifeng ;
Yuan, Xiaoyuan ;
Wu, Honghui ;
Feng, Xiaobin ;
Liu, Jiabin ;
Ding, Jun ;
Lu, Yang ;
Wang, Hongtao ;
Lu, Zhaoping ;
Yang, Wei .
MATERIALS TODAY, 2021, 46 :28-34
[8]   Grain boundary strengthening in alumina by rare earth impurities [J].
Buban, JP ;
Matsunaga, K ;
Chen, J ;
Shibata, N ;
Ching, WY ;
Yamamoto, T ;
Ikuhara, Y .
SCIENCE, 2006, 311 (5758) :212-215
[9]  
Caillard D., 2003, PERG MAT SER, V8, P13
[10]   High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C [J].
Chen, Heng ;
Xiang, Huimin ;
Dai, Fu-Zhi ;
Liu, Jiachen ;
Lei, Yiming ;
Zhang, Jie ;
Zhou, Yanchun .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (08) :1700-1705