Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine

被引:1
|
作者
Fatima, Hina [1 ,3 ]
Singh, Dimple [2 ]
Muhammad, Huzaifa [3 ]
Acharya, Swati [4 ]
Aziz, Mohammad Azhar [4 ,5 ]
机构
[1] Indian Inst Technol Roorkee, Polymer & Proc Engn Dept, Roorkee 247001, Uttarakhand, India
[2] Indian Inst Technol Roorkee, Dept Paper Technol, Roorkee 247001, Uttarakhand, India
[3] Alfaisal Univ, Coll Med, Riyadh 11533, Saudi Arabia
[4] Aligarh Muslim Univ, Interdisciplinary Nanotechnol Ctr, Aligarh 202002, Uttar Pradesh, India
[5] Aligarh Muslim Univ, Canc Nanomed Consortium, Aligarh 202002, Uttar Pradesh, India
关键词
CRISPR/Cas9; Gene editing; Nanoparticle; Viral and nonviral vectors; Cancer therapy; IN-VIVO DELIVERY; CRISPR-CAS9; THERAPEUTICS; LIPID NANOPARTICLES; GENOME; SYSTEM; PROGRESS; NANOTECHNOLOGY; STRATEGIES; ELEMENTS; DRUG;
D O I
10.1007/s13205-024-04186-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has revolutionized gene editing tools and paved the way for innovations in medical research for disease diagnosis and treatment. However, better specificity and efficient delivery of this gene machinery make it challenging to successfully edit genes for treating various diseases. This is mainly due to cellular barriers, instability in biological environments, and various off-target effects that prohibit safe and efficient delivery under in vivo conditions. This review examines several delivery modes [plasmid, mRNA, RNP (ribonucleoprotein)] and methods for the CRISPR-Cas9 system delivery, focusing on its potential applications in cancer therapy. Biocompatibility and cytotoxicity are crucial factors determining their safe and effective use. Various nanomaterials have been reviewed for their biocompatibility, limitations, and challenges in treating cancer. Among the reviewed nanoparticles, lipid nanoparticles (LNPs) stand out for their biocompatibility due to their biomimetic lipid bilayer that effectively delivers CRISPR/Cas9 cargoes while reducing toxicity. We discuss challenges in in vivo delivery and associated findings such as encapsulation, target delivery, controlled release, and endosomal escape. Future directions involve addressing limitations and adapting CRISPR-Cas9 for clinical trials, ensuring its safe and effective use.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement
    Yingxin Guo
    Guangdong Zhao
    Xing Gao
    Lin Zhang
    Yanan Zhang
    Xiaoming Cai
    Xuejiao Yuan
    Xingqi Guo
    Planta, 2023, 258
  • [32] CRISPR/Cas9 as a tool to dissect cancer mutations
    Sayed, Shady
    Paszkowski-Rogacz, Maciej
    Schmitt, Lukas Theo
    Buchholz, Frank
    METHODS, 2019, 164 : 36 - 48
  • [33] CRISPR/Cas9: The new era of gene therapy
    Alotaibi, Amal
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2020, 7 (10): : 20 - 29
  • [34] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [35] Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing
    Kaulich, Manuel
    Dowdy, Steven F.
    NUCLEIC ACID THERAPEUTICS, 2015, 25 (06) : 287 - 296
  • [36] CRISPR/Cas9:A powerful tool for crop genome editing
    Gaoyuan Song
    Meiling Jia
    Kai Chen
    Xingchen Kong
    Bushra Khattak
    Chuanxiao Xie
    Aili Li
    Long Mao
    The Crop Journal, 2016, 4 (02) : 75 - 82
  • [37] Off-target effects in CRISPR/Cas9 gene editing
    Guo, Congting
    Ma, Xiaoteng
    Gao, Fei
    Guo, Yuxuan
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [38] CRISPR/Cas9 mediated editing of phytoene desaturase gene in squash
    Thakur, Shallu
    Meru, Geoffrey
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 32 (04) : 862 - 869
  • [39] Recent advances of CRISPR/Cas9 gene editing in the treatment of β-thalassemia
    Jie, Qian
    Lei, Shuangyin
    Qu, Chao
    Wu, Hao
    Liu, Yingru
    Huang, Ping
    Teng, Shuzhi
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (21): : 2492 - 2508
  • [40] An efficient sorghum protoplast assay for transient gene expression and gene editing by CRISPR/Cas9
    Meng, Ruirui
    Wang, Chenchen
    Wang, Lihua
    Liu, Yanlong
    Zhan, Qiuwen
    Zheng, Jiacheng
    Li, Jieqin
    PEERJ, 2020, 8