A Microlocal Analysis of the Lévy Generator with Conjugate Points

被引:0
|
作者
Tully, Kevin [1 ]
机构
[1] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Microlocal analysis; L & eacute; vy process; Conjugate points; Fourier integral operators; X-RAY TRANSFORM; LEVY FLIGHT;
D O I
10.1007/s12220-024-01813-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the microlocal structure of the infinitesimal generator of a L & eacute;vy process on a closed Riemannian manifold when conjugate points are allowed. We show that if there are no singular conjugate pairs, then the infinitesimal generator is microlocally equal to a sum of pseudodifferential operators and Fourier integral operators. This provides a microlocal analogue of known results for the flat torus, the sphere, and Anosov manifolds.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] CLASSICAL AND MICROLOCAL ANALYSIS OF THE X-RAY TRANSFORM ON ANOSOV MANIFOLDS
    Gouezel, Sebastien
    Lefeuvre, Thibault
    ANALYSIS & PDE, 2021, 14 (01): : 301 - 322
  • [22] Microlocal analysis of imaging operators for effective common offset seismic reconstruction
    Grathwohl, Christine
    Kunstmann, Peer
    Quinto, Eric Todd
    Rieder, Andreas
    INVERSE PROBLEMS, 2018, 34 (11)
  • [23] Conjugate points on a type of Kahler manifolds
    Liu, Wei Ming
    Deng, Fu Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (06) : 1175 - 1184
  • [24] Singularities and conjugate points in FLRW spacetimes
    Huibert het Lam
    Tomislav Prokopec
    General Relativity and Gravitation, 2017, 49
  • [25] A geometric space without conjugate points
    Bucataru, Ioan
    Dahl, Matias F.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (01): : 17 - 40
  • [26] Conjugate Points in the Generalized Dido Problem
    Sachkov, Yu L.
    MATHEMATICAL NOTES, 2020, 108 (5-6) : 761 - 763
  • [27] Singularities and conjugate points in FLRW spacetimes
    Lam, Huibert Het
    Prokopec, Tomislav
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (10)
  • [28] Conjugate points along spherical harmonics
    Suri, Ali
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 206
  • [29] Conjugate Points in the Generalized Dido Problem
    Yu. L. Sachkov
    Mathematical Notes, 2020, 108 : 761 - 763
  • [30] Conjugate points on the quaternionic Heisenberg group
    Jang, C
    Kim, J
    Kim, Y
    Park, K
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2003, 40 (01) : 61 - 72