Machine learning based on alcohol drinking-gut microbiota-liver axis in predicting the occurrence of early-stage hepatocellular carcinoma

被引:1
作者
Yang, Yi [1 ,2 ]
Bo, Zhiyuan [3 ,4 ,5 ]
Wang, Jingxian [1 ]
Chen, Bo [4 ,5 ]
Su, Qing [1 ]
Lian, Yiran [7 ]
Guo, Yimo [8 ]
Yang, Jinhuan [4 ,5 ]
Zheng, Chongming [4 ,5 ]
Wang, Juejin [1 ]
Zeng, Hao [1 ]
Zhou, Junxi [1 ]
Chen, Yaqing [1 ]
Chen, Gang [4 ,5 ,6 ,9 ]
Wang, Yi [1 ]
机构
[1] Wenzhou Med Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Wenzhou 325035, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 2, Key Lab Intelligent Prevent Med Zhejiang Prov,Dept, Sch Med,Dept Epidemiol & Biostat,Sch Publ Hlth, Hangzhou, Peoples R China
[3] Zhejiang Univ, Sch Med, Womens Hosp, Dept Surg, Hangzhou, Peoples R China
[4] Wenzhou Med Univ, Affiliated Hosp 1, Dept Hepatobiliary Surg, Wenzhou 325035, Zhejiang, Peoples R China
[5] Wenzhou Med Univ, Affiliated Hosp 1, Key Lab Diag & Treatment Severe Hepatopancreat Dis, Wenzhou, Peoples R China
[6] Wenzhou Med Univ, Affiliated Hosp 1, Hepatobiliary Pancreat Tumor Bioengn Cross Int Joi, Wenzhou, Peoples R China
[7] Wenzhou Med Univ, Clin Sch 2, Wenzhou, Peoples R China
[8] Wenzhou Med Univ, Renji Coll, Clin Med, Wenzhou, Peoples R China
[9] Zhejiang Germany Interdisciplinary Joint Lab Hepat, Wenzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Early-stage hepatocellular carcinoma; Alcohol drinking; Gut microbiota; Mediation/Moderation effect; Machine learning; ARTIFICIAL-INTELLIGENCE; MEDIATION ANALYSIS; DISEASE; MODEL; INFLAMMATION; MECHANISMS; REGRESSION; DIAGNOSIS; INSIGHTS; RISK;
D O I
10.1186/s12885-024-13161-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundAlcohol drinking and gut microbiota are related to hepatocellular carcinoma (HCC), but the specific relationship between them remains unclear. AimsWe aimed to establish the alcohol drinking-gut microbiota-liver axis and develop machine learning (ML) models in predicting the occurrence of early-stage HCC. MethodsTwo hundred sixty-nine patients with early-stage HCC and 278 controls were recruited. Alcohol drinking-gut microbiota-liver axis was established through the mediation/moderation effect analyses. Eight ML algorithms including Classification and Regression Tree (CART), Gradient Boosting Machine (GBM), K-Nearest Neighbor (KNN), Logistic Regression (LR), Neural Network (NN), Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost) were applied. ResultsA total of 160 pairs of individuals were included for analyses. The mediation effects of Genus_Catenibacterium (P = 0.024), Genus_Tyzzerella_4 (P < 0.001), and Species_Tyzzerella_4 (P = 0.020) were discovered. The moderation effects of Family_Enterococcaceae (OR = 0.741, 95%CI:0.160-0.760, P = 0.017), Family_Leuconostocaceae (OR = 0.793, 95%CI:0.486-3.593, P = 0.010), Genus_Enterococcus (OR = 0.744, 95%CI:0.161-0.753, P = 0.017), Genus_Erysipelatoclostridium (OR = 0.693, 95%CI:0.062-0.672, P = 0.032), Genus_Lactobacillus (OR = 0.655, 95%CI:0.098-0.749, P = 0.011), Species_Enterococcus_faecium (OR = 0.692, 95%CI:0.061-0.673, P = 0.013), and Species_Lactobacillus (OR = 0.653, 95%CI:0.086-0.765, P = 0.014) were uncovered. The predictive power of eight ML models was satisfactory (AUCs:0.855-0.932). The XGBoost model had the best predictive ability (AUC = 0.932). ConclusionsML models based on the alcohol drinking-gut microbiota-liver axis are valuable in predicting the occurrence of early-stage HCC.
引用
收藏
页数:12
相关论文
共 56 条
  • [1] Abbafati C, 2020, LANCET, V396, P1204
  • [2] Machine learning approaches to drug response prediction: challenges and recent progress
    Adam, George
    Rampasek, Ladislav
    Safikhani, Zhaleh
    Smirnov, Petr
    Haibe-Kains, Benjamin
    Goldenberg, Anna
    [J]. NPJ PRECISION ONCOLOGY, 2020, 4 (01)
  • [3] Effect size and power in assessing moderating effects of categorical variables using multiple regression: A 30-year review
    Aguinis, H
    Beaty, JC
    Boik, RJ
    Pierce, CA
    [J]. JOURNAL OF APPLIED PSYCHOLOGY, 2005, 90 (01) : 94 - 107
  • [4] The gut-liver axis in liver disease: Pathophysiological basis for therapy
    Albillos, Agustin
    de Gottardi, Andrea
    Rescigno, Maria
    [J]. JOURNAL OF HEPATOLOGY, 2020, 72 (03) : 558 - 577
  • [5] Machine learning for microbiologists
    Asnicar, Francesco
    Thomas, Andrew Maltez
    Passerini, Andrea
    Waldron, Levi
    Segata, Nicola
    [J]. NATURE REVIEWS MICROBIOLOGY, 2024, 22 (04) : 191 - 205
  • [6] Alcohol, liver disease and the gut microbiota
    Bajaj, Jasmohan S.
    [J]. NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2019, 16 (04) : 235 - 246
  • [7] NCCN Guidelines® Insights Hepatobiliary Cancers, Version 1.2017 Featured Updates to the NCCN Guidelines
    Benson, Al B., III
    D'Angelica, Michael I.
    Abbott, Daniel E.
    Abrams, Thomas A.
    Alberts, Steven R.
    Saenz, Daniel Anaya
    Are, Chandrakanth
    Brown, Daniel B.
    Chang, Daniel T.
    Covey, Anne M.
    Hawkins, William
    Iyer, Renuka
    Jacob, Rojymon
    Karachristos, Andrea
    Kelley, R. Kate
    Kim, Robin
    Palta, Manisha
    Park, James O.
    Sahai, Vaibhav
    Schefter, Tracey
    Schmidt, Carl
    Sicklick, Jason K.
    Singh, Gagandeep
    Sohal, Davendra
    Stein, Stacey
    Tian, G. Gary
    Vauthey, Jean-Nicolas
    Venook, Alan P.
    Zhu, Andrew X.
    Hoffmann, Karin G.
    Darlow, Susan
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2017, 15 (05): : 563 - 573
  • [8] Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer
    Chaudharyl, Kumardeep
    Poirionl, Olivier B.
    Lu, Liangqun
    Garmire, Lana X.
    [J]. CLINICAL CANCER RESEARCH, 2018, 24 (06) : 1248 - 1259
  • [9] Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images
    Cheng, Na
    Ren, Yong
    Zhou, Jing
    Zhang, Yiwang
    Wang, Deyu
    Zhang, Xiaofang
    Chen, Bing
    Liu, Fang
    Lv, Jin
    Cao, Qinghua
    Chen, Sijin
    Du, Hong
    Hui, Dayang
    Weng, Zijin
    Liang, Qiong
    Su, Bojin
    Tang, Luying
    Han, Lanqing
    Chen, Jianning
    Shao, Chunkui
    [J]. GASTROENTEROLOGY, 2022, 162 (07) : 1948 - +
  • [10] The reusable holdout: Preserving validity in adaptive data analysis
    Dwork, Cynthia
    Feldman, Vitaly
    Hardt, Moritz
    Pitassi, Toniann
    Reingold, Omer
    Roth, Aaron
    [J]. SCIENCE, 2015, 349 (6248) : 636 - 638