A capillary-driven microfluidic device for performing spatial multiplex PCR

被引:0
作者
Wiederkehr, Rodrigo S. [1 ]
Marchal, Elisabeth [1 ]
Fauvart, Maarten [1 ]
Forceville, Tomas [1 ]
Taher, Ahmed [1 ]
Steylaerts, Tim [1 ]
Choe, Youngjae [1 ]
Dusar, Hans [1 ]
Lenci, Silvia [1 ]
Siouti, Eleni [2 ]
Potsika, Vassiliki T. [3 ]
Andreakos, Evangelos [2 ]
Stakenborg, Tim [1 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] BRFAA Biomed Res Fdn Acad Athens, 4 Soranou Ephessiou St, Athens, Greece
[3] Univ Ioannina, Unit Med Technol & Intelligent Informat Syst, Ioannina, Greece
基金
欧盟地平线“2020”;
关键词
Capillary flow; Multiplex PCR; Silicon chip; Lab-on-a-chip; Fluorescence detection; REAL-TIME PCR; SYSTEM; CHIP;
D O I
10.1007/s10544-025-00745-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multiplex polymerase chain reaction (PCR) tests multiple biomarkers or pathogens that cause overlapping symptoms, making it an essential tool in syndromic testing. To achieve a multiplex PCR on chip, a design based on capillary-driven fluidic actuation is proposed. Our silicon chip features 22 reaction chambers and allows primers and probes to be pre-spotted in the reaction chambers prior to use. The design facilitates rapid sample loading through a common inlet channel, delivering reagents to all reaction chambers in less than 10 s. A custom clamping mechanism combined with a double depth cavity design ensures proper sealing during temperature cycling without the need for extra reagents like oil. Temperature cycling and fluorescence imaging were performed using custom-made hardware. As a proof of concept, two single nucleotide polymorphisms (SNPs), CyP2C19*2 and PCSK9 were detected. These results demonstrate the feasibility of on-chip multiplex PCR, compatible with different assays in parallel and requiring only a single pipetting step for reagent loading, without active fluidic actuation like pumping.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Ahmed W., 2021, Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance, DOI DOI 10.20944/PREPRINTS202104.0481.V1
[2]   Polymerase chain reaction in microfluidic devices [J].
Ahrberg, Christian D. ;
Manz, Andreas ;
Chung, Bong Geun .
LAB ON A CHIP, 2016, 16 (20) :3866-3884
[3]   A new multiplex RT-qPCR method for the simultaneous detection and discrimination of Zika and chikungunya viruses [J].
Broeders, Sylvia ;
Garlant, Linda ;
Fraiture, Marie-Alice ;
Vandermassen, Els ;
Suin, Vanessa ;
Vanhomwegen, Jessica ;
Dupont-Rouzeyrol, Myrielle ;
Rousset, Dominique ;
Van Gucht, Steven ;
Roosens, Nancy .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2020, 92 :160-170
[4]   Singleplex, multiplex and pooled sample real-time RT-PCR assays for detection of SARS-CoV-2 in an occupational medicine setting [J].
Butler, Kimberly S. ;
Carson, Bryan D. ;
Podlevsky, Joshua D. ;
Mayes, Cathryn M. ;
Rowland, Jessica M. ;
Campbell, DeAnna ;
Ricken, J. Bryce ;
Wudiri, George ;
Timlin, Jerilyn A. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]   Ultra-fast, sensitive and quantitative on-chip detection of group B streptococci in clinical samples [J].
Cai, Qing ;
Fauvart, Maarten ;
Wiederkehr, Rodrigo Sergio ;
Jones, Benjamin ;
Cools, Piet ;
Goos, Peter ;
Vaneechoutte, Mario ;
Stakenborg, Tim .
TALANTA, 2019, 192 :220-225
[6]   Present status of microfluidic PCR chip in nucleic acid detection and future perspective [J].
Chen, Shiyu ;
Sun, Yucheng ;
Fan, Fangfang ;
Chen, Shulang ;
Zhang, Yingrui ;
Zhang, Yi ;
Meng, Xianli ;
Lin, Jin-Ming .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2022, 157
[7]   PCR biocompatibility of lab-on-a-chip and MEMS materials [J].
Christensen, T. B. ;
Pedersen, C. M. ;
Groendhal, K. G. ;
Jensen, T. G. ;
Sekulovic, A. ;
Bang, D. D. ;
Wolff, A. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (08) :1527-1532
[8]   Monolithic, 3D-printed lab-on-disc platform for multiplexed molecular detection of SARS-CoV-2 [J].
Ding, Xiong ;
Li, Ziyue ;
Liu, Changchun .
SENSORS AND ACTUATORS B-CHEMICAL, 2022, 351
[9]   Syndromic diagnostic testing: a new way to approach patient care in the treatment of infectious diseases [J].
Dumkow, Lisa E. ;
Worden, Lacy J. ;
Rao, Sonia N. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2021, 76 :4-11
[10]   A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability [J].
Easley, Christopher J. ;
Karlinsey, James M. ;
Bienvenue, Joan M. ;
Legendre, Lindsay A. ;
Roper, Michael G. ;
Feldman, Sanford H. ;
Hughes, Molly A. ;
Hewlett, Erik L. ;
Merkel, Tod J. ;
Ferrance, Jerome P. ;
Landers, James P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (51) :19272-19277