Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator

被引:0
|
作者
Alvarez-Ramirez, Martha [1 ]
Garcia-Saldana, Johanna D. [2 ]
Medina, Mario [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09310, Mexico
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso Ribera 2850, Concepcion, Chile
关键词
Leslie-Gower; Linear response function; Phase portrait; Liouville integrability; Darboux integrability; Poincar & eacute; compactification; Separatrices; STOCHASTIC MODEL; PHASE PORTRAITS;
D O I
10.1007/s12346-024-01155-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a Leslie-Gower predator-prey model with a generalist or alternating food for predator and linear functional response. Using a topological equivalent polynomial system we prove that the system is not Liouvillian (hence also not Darboux) integrable. In order to study the global dynamics of this model, we use the Poincar & eacute; compactification of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>2$$\end{document} to characterize all phase portraits in the Poincar & eacute; disc, obtaining two different topological phase portraits.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] DYNAMICS OF A PREY-PREDATOR SYSTEM WITH MODIFIED LESLIE-GOWER AND HOLLING TYPE II SCHEMES INCORPORATING A PREY REFUGE
    Slimani, Safia
    de Fitte, Paul Raynaud
    Boussaada, Islam
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 5003 - 5039
  • [42] Analysis of a stochastic predator-prey system with modified Leslie-Gower and Holling-type IV schemes
    Xu, Dongsheng
    Liu, Ming
    Xu, Xiaofeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 537
  • [43] PHASE PORTRAITS, HOPF BIFURCATIONS AND LIMIT CYCLES OF LESLIE-GOWER PREDATOR-PREY SYSTEMS WITH HARVESTING RATES
    Zhu, Changrong
    Lan, Kunquan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (01): : 289 - 306
  • [44] Wave Analysis of a Diffusive Modified Leslie-Gower Predator-prey System with Holling Type IV Schemes
    Zhao, Jiang-Lin
    Deng, Ding-Sheng
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON BIOLOGICAL SCIENCES AND TECHNOLOGY, 2016, : 325 - 330
  • [45] Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes
    Yuhua Lin
    Xiangdong Xie
    Fengde Chen
    Tingting Li
    Advances in Difference Equations, 2016
  • [46] Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes
    Lin, Yuhua
    Xie, Xiangdong
    Chen, Fengde
    Li, Tingting
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [47] THE EFFECT OF L acute accent EVY NOISE AND WHITE NOISE ON A LESLIE-GOWER PREDATOR-PREY SYSTEM WITH PREY REFUGE
    Li, Shuang
    LI, Yong
    Zhang, Xinan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 3807 - 3819
  • [48] A MODIFIED LESLIE-GOWER FRACTIONAL ORDER PREY-PREDATOR INTERACTION MODEL INCORPORATING THE EFFECT OF FEAR ON PREY
    Mondal, Narayan
    Barman, Dipesh
    Roy, Jyotirmoy
    Alam, Shariful
    Sajid, Mohammad
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (01): : 198 - 232
  • [49] Analysis of a stochastic Leslie-Gower predator-prey system with Beddington-DeAngelis and Ornstein-Uhlenbeck process
    Wu, Yifan
    Ai, Xiaohui
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (01): : 370 - 385
  • [50] Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect
    Song, Xinyu
    Li, Yongfeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (01) : 64 - 79