Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator

被引:0
|
作者
Alvarez-Ramirez, Martha [1 ]
Garcia-Saldana, Johanna D. [2 ]
Medina, Mario [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09310, Mexico
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso Ribera 2850, Concepcion, Chile
关键词
Leslie-Gower; Linear response function; Phase portrait; Liouville integrability; Darboux integrability; Poincar & eacute; compactification; Separatrices; STOCHASTIC MODEL; PHASE PORTRAITS;
D O I
10.1007/s12346-024-01155-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a Leslie-Gower predator-prey model with a generalist or alternating food for predator and linear functional response. Using a topological equivalent polynomial system we prove that the system is not Liouvillian (hence also not Darboux) integrable. In order to study the global dynamics of this model, we use the Poincar & eacute; compactification of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>2$$\end{document} to characterize all phase portraits in the Poincar & eacute; disc, obtaining two different topological phase portraits.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] An Impulsive Predator-Prey System with Modified Leslie-Gower Functional Response and Diffusion
    Li, Xiaoyue
    Wang, Qi
    Han, Renji
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
  • [32] Dynamics of a slow-fast Leslie-Gower predator-prey model with prey harvesting
    Yang, Yantao
    Zhang, Xiang
    Zu, Jian
    CHAOS, 2024, 34 (10)
  • [33] Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays
    Ma, Yongfeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) : 370 - 375
  • [34] Effect of parasitic infection in the Leslie-Gower predator-prey model
    Haque, Mainul
    Venturino, Ezio
    JOURNAL OF BIOLOGICAL SYSTEMS, 2008, 16 (03) : 425 - 444
  • [35] Qualitative analysis of the dynamics of a modified Leslie-Gower predator-prey model with difussion
    Duque, Cosme
    Rosales, Richard
    Sivoli, Zoraida
    CIENCIA E INGENIERIA, 2023, 44 (03): : 367 - 376
  • [36] Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects
    Xing, Mengyun
    He, Mengxin
    Li, Zhong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 792 - 831
  • [37] Effects of Delay and Diffusion on the Dynamics of a Leslie-Gower Type Predator-Prey Model
    Zhang, Jia-Fang
    Yan, Xiang-Ping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [38] Dynamic Behaviors of a Harvesting Leslie-Gower Predator-Prey Model
    Zhang, Na
    Chen, Fengde
    Su, Qianqian
    Wu, Ting
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [39] Qualitative Analysis of a Leslie-Gower Predator-Prey Model with Delay
    Duque, Cosme
    Sivoli, Zoraida
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2022, 10 (01): : 125 - 143
  • [40] Spatial Dynamics of a Leslie-Gower Type Predator-Prey Model with Interval Parameters
    Wang, Caiyun
    Guo, Min
    Lan, Wangsen
    Xu, Xiaoxin
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022