Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator

被引:0
|
作者
Alvarez-Ramirez, Martha [1 ]
Garcia-Saldana, Johanna D. [2 ]
Medina, Mario [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09310, Mexico
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso Ribera 2850, Concepcion, Chile
关键词
Leslie-Gower; Linear response function; Phase portrait; Liouville integrability; Darboux integrability; Poincar & eacute; compactification; Separatrices; STOCHASTIC MODEL; PHASE PORTRAITS;
D O I
10.1007/s12346-024-01155-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a Leslie-Gower predator-prey model with a generalist or alternating food for predator and linear functional response. Using a topological equivalent polynomial system we prove that the system is not Liouvillian (hence also not Darboux) integrable. In order to study the global dynamics of this model, we use the Poincar & eacute; compactification of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>2$$\end{document} to characterize all phase portraits in the Poincar & eacute; disc, obtaining two different topological phase portraits.
引用
收藏
页数:19
相关论文
共 50 条