Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator

被引:0
|
作者
Alvarez-Ramirez, Martha [1 ]
Garcia-Saldana, Johanna D. [2 ]
Medina, Mario [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09310, Mexico
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso Ribera 2850, Concepcion, Chile
关键词
Leslie-Gower; Linear response function; Phase portrait; Liouville integrability; Darboux integrability; Poincar & eacute; compactification; Separatrices; STOCHASTIC MODEL; PHASE PORTRAITS;
D O I
10.1007/s12346-024-01155-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a Leslie-Gower predator-prey model with a generalist or alternating food for predator and linear functional response. Using a topological equivalent polynomial system we prove that the system is not Liouvillian (hence also not Darboux) integrable. In order to study the global dynamics of this model, we use the Poincar & eacute; compactification of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>2$$\end{document} to characterize all phase portraits in the Poincar & eacute; disc, obtaining two different topological phase portraits.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] DYNAMICS OF A LESLIE-GOWER PREDATOR-PREY MODEL WITH ADVECTION AND FREE BOUNDARIES
    Zhang, Yingshu
    Li, Yutian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 319 - 350
  • [22] Analysis on a Stochastic Predator-Prey Model with Modified Leslie-Gower Response
    Lv, Jingliang
    Wang, Ke
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [23] Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses
    Ali N.
    Jazar M.
    Journal of Applied Mathematics and Computing, 2013, 43 (1-2) : 271 - 293
  • [24] Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis
    Tian, Jialu
    Liu, Ping
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (03): : 929 - 942
  • [25] Global Stability in The Delayed Leslie-Gower Predator-Prey System
    Wang, Wenlong
    Mang, Shufang
    Zhang, Chunrui
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 299 - 307
  • [26] Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response
    Zhou, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 1 - 18
  • [27] Spatiotemporal Dynamics of a Diffusive Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response
    Shi, Hong-Bo
    Ruan, Shigui
    Su, Ying
    Zhang, Jia-Fang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):
  • [28] Dynamics of a Harvested Leslie-Gower Predator-Prey Model with Simplified Holling Type IV Functional Response
    Huangfu, Chenyang
    Li, Zhong
    Chen, Fengde
    Chen, Lijuan
    He, Mengxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (02):
  • [29] Degenerate Hopf bifurcation in a Leslie-Gower predator-prey model with predator harvest
    Su, Juan
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [30] A modified Leslie-Gower predator-prey model with ratio-dependent functional response and alternative food for the predator
    Flores, Jose D.
    Gonzalez-Olivares, Eduardo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2313 - 2328