Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator

被引:0
|
作者
Alvarez-Ramirez, Martha [1 ]
Garcia-Saldana, Johanna D. [2 ]
Medina, Mario [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09310, Mexico
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso Ribera 2850, Concepcion, Chile
关键词
Leslie-Gower; Linear response function; Phase portrait; Liouville integrability; Darboux integrability; Poincar & eacute; compactification; Separatrices; STOCHASTIC MODEL; PHASE PORTRAITS;
D O I
10.1007/s12346-024-01155-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a Leslie-Gower predator-prey model with a generalist or alternating food for predator and linear functional response. Using a topological equivalent polynomial system we prove that the system is not Liouvillian (hence also not Darboux) integrable. In order to study the global dynamics of this model, we use the Poincar & eacute; compactification of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>2$$\end{document} to characterize all phase portraits in the Poincar & eacute; disc, obtaining two different topological phase portraits.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Delay-induced Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with nonmonotonic functional response
    Jiang, Jiao
    Song, Yongli
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (07) : 2454 - 2465
  • [22] Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting
    Wu, Hongqiuxue
    Li, Zhong
    He, Mengxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (10) : 18592 - 18629
  • [23] Stationary Patterns for A Modified Leslie-Gower Predator-Prey Model with Cross-Diffusion
    Zhang, Lina
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 422 - 426
  • [24] Hopf Bifurcation in a Delayed Diffusive Leslie-Gower Predator-Prey Model with Herd Behavior
    Zhang, Fengrong
    Li, Yan
    Li, Changpin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (04):
  • [25] Necessary and sufficient conditions for the nonexistence of limit cycles of Leslie-Gower predator-prey models
    Zhang Daoxiang
    Ping Yan
    APPLIED MATHEMATICS LETTERS, 2017, 71 : 1 - 5
  • [26] Modeling Allee Effect in the Leslie-Gower Predator-Prey System Incorporating a Prey Refuge
    Yin, Wenqi
    Li, Zhong
    Chen, Fengde
    He, Mengxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (06):
  • [27] Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes
    Aziz-Alaoui, MA
    Okiye, MD
    APPLIED MATHEMATICS LETTERS, 2003, 16 (07) : 1069 - 1075
  • [28] Global Stability of The Equilibrium for The Predator-prey Model with Modified Leslie-Gower Holling-type II Schemes
    Feng, Xiaozhou
    Li, Yanling
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 967 - 971
  • [29] Turing instability in a modified cross-diffusion Leslie-Gower predator-prey model with Beddington-DeAngelis functional response
    Farshid, Marzieh
    Jalilian, Yaghoub
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [30] Qualitative Analysis of a Modified Leslie-Gower Predator-prey Model with Weak Allee Effect II
    Singh, Manoj Kumar
    Bhadauria, B. S.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2019, 14 (01): : 139 - 163