Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator

被引:0
|
作者
Alvarez-Ramirez, Martha [1 ]
Garcia-Saldana, Johanna D. [2 ]
Medina, Mario [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09310, Mexico
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso Ribera 2850, Concepcion, Chile
关键词
Leslie-Gower; Linear response function; Phase portrait; Liouville integrability; Darboux integrability; Poincar & eacute; compactification; Separatrices; STOCHASTIC MODEL; PHASE PORTRAITS;
D O I
10.1007/s12346-024-01155-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a Leslie-Gower predator-prey model with a generalist or alternating food for predator and linear functional response. Using a topological equivalent polynomial system we prove that the system is not Liouvillian (hence also not Darboux) integrable. In order to study the global dynamics of this model, we use the Poincar & eacute; compactification of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>2$$\end{document} to characterize all phase portraits in the Poincar & eacute; disc, obtaining two different topological phase portraits.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Dynamics of a Leslie-Gower predator-prey model with Holling type II functional response, Allee effect and a generalist predator
    Arancibia-Ibarra, Claudio
    Flores, Jose
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 : 1 - 22
  • [2] Bifurcation of a Leslie-Gower Predator-Prey Model with Nonlinear Harvesting and a Generalist Predator
    He, Mengxin
    Li, Zhong
    AXIOMS, 2024, 13 (10)
  • [3] Global dynamics of a Leslie-Gower predator-prey model with square root response function
    He, Mengxin
    Li, Zhong
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [4] Global Bifurcation in a Modified Leslie-Gower Predator-Prey Model
    Tian, Jialu
    Liu, Ping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (02):
  • [5] On the dynamics of a Leslie-Gower predator-prey ternary model with intraguild
    Accarino, C.
    Capone, F.
    De Luca, R.
    Massa, G.
    RICERCHE DI MATEMATICA, 2023, 74 (2) : 1099 - 1117
  • [6] Global dynamics of a Leslie-Gower predator-prey model in open advective environments
    Zhang, Baifeng
    Zhang, Guohong
    Wang, Xiaoli
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (03)
  • [7] MULTISTABILITY ON A LESLIE-GOWER TYPE PREDATOR-PREY MODEL WITH NONMONOTONIC FUNCTIONAL RESPONSE
    Gonzalez-Yanez, Betsabe
    Gonzalez-Olivares, Eduardo
    Mena-Lorca, Jaime
    BIOMAT 2006, 2007, : 359 - +
  • [8] Analysis of a diffusive Leslie-Gower predator-prey model with nonmonotonic functional response
    Yin, Hongwei
    Zhou, Jiaxing
    Xiao, Xiaoyong
    Wen, Xiaoqing
    CHAOS SOLITONS & FRACTALS, 2014, 65 : 51 - 61
  • [9] Population dynamics in a Leslie-Gower predator-prey model with predator harvesting at high densities
    Garcia, Christian Cortes
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 804 - 838
  • [10] Global attractivity of Leslie-Gower predator-prey model incorporating prey cannibalism
    Lin, Qifa
    Liu, Chulei
    Xie, Xiangdong
    Xue, Yalong
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)