Global Dynamics and Integrability of a Leslie-Gower Predator-Prey Model with Linear Functional Response and Generalist Predator

被引:0
|
作者
Alvarez-Ramirez, Martha [1 ]
Garcia-Saldana, Johanna D. [2 ]
Medina, Mario [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09310, Mexico
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso Ribera 2850, Concepcion, Chile
关键词
Leslie-Gower; Linear response function; Phase portrait; Liouville integrability; Darboux integrability; Poincar & eacute; compactification; Separatrices; STOCHASTIC MODEL; PHASE PORTRAITS;
D O I
10.1007/s12346-024-01155-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a Leslie-Gower predator-prey model with a generalist or alternating food for predator and linear functional response. Using a topological equivalent polynomial system we prove that the system is not Liouvillian (hence also not Darboux) integrable. In order to study the global dynamics of this model, we use the Poincar & eacute; compactification of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>2$$\end{document} to characterize all phase portraits in the Poincar & eacute; disc, obtaining two different topological phase portraits.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Global dynamics of a Leslie-Gower predator-prey model with square root response function
    He, Mengxin
    Li, Zhong
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [2] On the dynamics of a Leslie-Gower predator-prey ternary model with intraguild
    Accarino, C.
    Capone, F.
    De Luca, R.
    Massa, G.
    RICERCHE DI MATEMATICA, 2023, 74 (2) : 1099 - 1117
  • [3] A LESLIE-GOWER PREDATOR-PREY MODEL WITH A FREE BOUNDARY
    Liu, Yunfeng
    Guo, Zhiming
    El Smaily, Mohammad
    Wang, Lin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (07): : 2063 - 2084
  • [4] Effect of weak prey in Leslie-Gower predator-prey model
    Mohammadi, Hossein
    Mahzoon, Mojtaba
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 196 - 204
  • [5] Dynamics of a Leslie-Gower predator-prey model with additive Allee effect
    Cai, YongLi
    Zhao, Caidi
    Wang, Weiming
    Wang, Jinfeng
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (07) : 2092 - 2106
  • [6] DYNAMICS OF A LESLIE-GOWER PREDATOR-PREY MODEL WITH ADVECTION AND FREE BOUNDARIES
    Zhang, Yingshu
    Li, Yutian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 319 - 350
  • [7] Dynamics of a Harvested Leslie-Gower Predator-Prey Model with Simplified Holling Type IV Functional Response
    Huangfu, Chenyang
    Li, Zhong
    Chen, Fengde
    Chen, Lijuan
    He, Mengxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (02):
  • [8] Qualitative analysis of the dynamics of a modified Leslie-Gower predator-prey model with difussion
    Duque, Cosme
    Rosales, Richard
    Sivoli, Zoraida
    CIENCIA E INGENIERIA, 2023, 44 (03): : 367 - 376
  • [9] Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects
    Xing, Mengyun
    He, Mengxin
    Li, Zhong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 792 - 831
  • [10] Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey
    Meng, Xin-You
    Huo, Hai-Feng
    Zhang, Xiao-Bing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 1 - 25