Unified laser stabilization and isolation on a silicon chip

被引:6
作者
White, Alexander D. [1 ]
Ahn, Geun Ho [1 ]
Luhtaru, Richard [1 ]
Guo, Joel [2 ]
Morin, Theodore J. [2 ]
Saxena, Abhi [3 ]
Chang, Lin [2 ]
Majumdar, Arka [3 ]
Van Gasse, Kasper [1 ]
Bowers, John E. [2 ]
Vuckovic, Jelena [1 ]
机构
[1] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[2] Univ Calif Santa Barbara, ECE Dept, Santa Barbara, CA USA
[3] Univ Washington, ECE Dept, Seattle, WA USA
基金
美国国家科学基金会;
关键词
REFLECTION SENSITIVITY; QUANTUM; ADVANTAGE;
D O I
10.1038/s41566-024-01539-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale, heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nanoscale devices thwarted by bulky laser sources that are orders of magnitude larger than the devices themselves. Here we show that the two main components for high-performance lasers-noise reduction and isolation-can be sourced simultaneously from a single, passive, CMOS-compatible nanophotonic device, eliminating the need to combine incompatible technologies. To realize this, we take advantage of both the long photon lifetime and the non-reciprocal Kerr nonlinearity of a high-quality-factor silicon nitride ring resonator to self-injection lock a semiconductor laser chip while also providing isolation. We also identify a previously unappreciated power regime limitation of current on-chip laser architectures, which our system overcomes. Using our device, which we term a unified laser stabilizer, we demonstrate an on-chip integrated laser system with built-in isolation and noise reduction that operates with turnkey reliability. This approach departs from efforts to directly miniaturize and integrate traditional laser system components and serves to bridge the gap to fully integrated optical technologies. Both laser stabilization and isolation are demonstrated simultaneously by using Kerr nonlinearity in a high-Q silicon nitride ring resonator to self-injection lock a distributed-feedback laser, bringing on-chip lasers closer to real-world fully integrated applications.
引用
收藏
页码:1305 / 1311
页数:8
相关论文
共 46 条
[21]   Self-Injection Locked Frequency Conversion Laser [J].
Ling, Jingwei ;
Staffa, Jeremy ;
Wang, Heming ;
Shen, Boqiang ;
Chang, Lin ;
Javid, Usman A. ;
Wu, Lue ;
Yuan, Zhiquan ;
Lopez-Rios, Raymond ;
Li, Mingxiao ;
He, Yang ;
Li, Bohan ;
Bowers, John E. ;
Vahala, Kerry J. ;
Lin, Qiang .
LASER & PHOTONICS REVIEWS, 2023, 17 (05)
[22]   Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon [J].
Liu, Alan Y. ;
Komljenovic, Tin ;
Davenport, Michael L. ;
Gossard, Arthur C. ;
Bowers, John E. .
OPTICS EXPRESS, 2017, 25 (09) :9535-9543
[23]   High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits [J].
Liu, Junqiu ;
Huang, Guanhao ;
Wang, Rui Ning ;
He, Jijun ;
Raja, Arslan S. ;
Liu, Tianyi ;
Engelsen, Nils J. ;
Kippenberg, Tobias J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[24]   Quantum computational advantage with a programmable photonic processor [J].
Madsen, Lars S. ;
Laudenbach, Fabian ;
Askarani, Mohsen Falamarzi. ;
Rortais, Fabien ;
Vincent, Trevor ;
Bulmer, Jacob F. F. ;
Miatto, Filippo M. ;
Neuhaus, Leonhard ;
Helt, Lukas G. ;
Collins, Matthew J. ;
Lita, Adriana E. ;
Gerrits, Thomas ;
Nam, Sae Woo ;
Vaidya, Varun D. ;
Menotti, Matteo ;
Dhand, Ish ;
Vernon, Zachary ;
Quesada, Nicolas ;
Lavoie, Jonathan .
NATURE, 2022, 606 (7912) :75-+
[25]   Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers [J].
Matsui, Yasuhiro ;
Schatz, Richard ;
Che, Di ;
Khan, Ferdous ;
Kwakernaak, Martin ;
Sudo, Tsurugi .
NATURE PHOTONICS, 2021, 15 (01) :59-63
[26]   Atomic clock performance enabling geodesy below the centimetre level [J].
McGrew, W. F. ;
Zhang, X. ;
Fasano, R. J. ;
Schaffer, S. A. ;
Beloy, K. ;
Nicolodi, D. ;
Brown, R. C. ;
Hinkley, N. ;
Milani, G. ;
Schioppo, M. ;
Yoon, T. H. ;
Ludlow, A. D. .
NATURE, 2018, 564 (7734) :87-+
[27]   Experimentally realized in situ backpropagation for deep learning in photonic neural networks [J].
Pai, Sunil ;
Sun, Zhanghao ;
Hughes, Tyler W. ;
Park, Taewon ;
Bartlett, Ben ;
Williamson, Ian A. D. ;
Minkov, Momchil ;
Milanizadeh, Maziyar ;
Abebe, Nathnael ;
Morichetti, Francesco ;
Melloni, Andrea ;
Fan, Shanhui ;
Solgaard, Olav ;
Miller, David A. B. .
SCIENCE, 2023, 380 (6643) :398-403
[28]   Massively scalable Kerr comb-driven silicon photonic link [J].
Rizzo, Anthony ;
Novick, Asher ;
Gopal, Vignesh ;
Kim, Bok Young ;
Ji, Xingchen ;
Daudlin, Stuart ;
Okawachi, Yoshitomo ;
Cheng, Qixiang ;
Lipson, Michal ;
Gaeta, Alexander L. ;
Bergman, Keren .
NATURE PHOTONICS, 2023, 17 (09) :781-+
[29]   A universal 3D imaging sensor on a silicon photonics platform [J].
Rogers, Christopher ;
Piggott, Alexander Y. ;
Thomson, David J. ;
Wiser, Robert F. ;
Opris, Ion E. ;
Fortune, Steven A. ;
Compston, Andrew J. ;
Gondarenko, Alexander ;
Meng, Fanfan ;
Chen, Xia ;
Reed, Graham T. ;
Nicolaescu, Remus .
NATURE, 2021, 590 (7845) :256-261
[30]   INFRARED AND OPTICAL MASERS [J].
SCHAWLOW, AL ;
TOWNES, CH .
PHYSICAL REVIEW, 1958, 112 (06) :1940-1949