Ma-Minda Starlikeness of Univalent Functions

被引:0
作者
Lecko, Adam [1 ]
Madhumitha, Saravanarasu [2 ]
Ravichandran, Vaithiyanathan [3 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Dept Complex Anal, Ul Sloneczna 54, PL-10710 Olsztyn, Poland
[2] Kongu Engn Coll, Dept Math, Perundurai 638060, Tamilnadu, India
[3] Natl Inst Technol, Dept Math, Trichy 620015, Tamilnadu, India
关键词
Starlike functions; subordination; radius problem; uniformly convex functions; Ma-Minda starlike functions; SUBCLASS;
D O I
10.1007/s00025-025-02359-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A normalized analytic function f defined on the unit disk is Ma-Minda starlike (with respect to phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}) if the quantity zf '(z)/f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf'(z)/f(z)$$\end{document} is subordinate to the function phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. The radius of starlikeness and parabolic starlikeness of the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of univalent functions on the unit disk are well-known. In this paper, we determine the radii of functions in S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} to belong to several well-known classes of Ma-Minda starlike functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On the order of strong starlikeness and the radii of starlikeness for of some close-to-convex functions
    Nunokawa, Mamoru
    Sokol, Janusz
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 2367 - 2378
  • [42] Certain subclasses of analytic univalent functions generated by harmonic univalent functions
    Joshi, Santosh
    Shelake, Girish
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (03): : 345 - 354
  • [43] Radius of Starlikeness for Classes of Analytic Functions
    See Keong Lee
    Kanika Khatter
    V. Ravichandran
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 4469 - 4493
  • [44] RADII OF STARLIKENESS OF SOME SPECIAL FUNCTIONS
    Baricz, Arpad
    Dimitrov, Dimitar K.
    Orhan, Halit
    Yagmur, Nihat
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) : 3355 - 3367
  • [45] Radii of starlikeness and convexity of Wright functions
    Baricz, Arpad
    Toklu, Evrim
    Kadioglu, E.
    MATHEMATICAL COMMUNICATIONS, 2018, 23 (01) : 97 - 117
  • [46] Starlikeness and convexity of generalized Bessel functions
    Baricz, Arpad
    Ponnusamy, Saminathan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (09) : 641 - 653
  • [47] Some Starlikeness Criterions for Analytic Functions
    Bao, Gejun
    Guo, Lifeng
    Ling, Yi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [48] Starlikeness of a product of starlike functions with non-vanishing polynomials
    Somya Malik
    V. Ravichandran
    Analysis and Mathematical Physics, 2023, 13
  • [49] The starlikeness of analytic functions of Koebe type
    Siregar, Saibah
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) : 2928 - 2938
  • [50] Product of univalent functions
    Obradovic, Milutin
    Ponnusamy, Saminathan
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (3-4) : 793 - 799