Ma-Minda Starlikeness of Univalent Functions

被引:0
作者
Lecko, Adam [1 ]
Madhumitha, Saravanarasu [2 ]
Ravichandran, Vaithiyanathan [3 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Dept Complex Anal, Ul Sloneczna 54, PL-10710 Olsztyn, Poland
[2] Kongu Engn Coll, Dept Math, Perundurai 638060, Tamilnadu, India
[3] Natl Inst Technol, Dept Math, Trichy 620015, Tamilnadu, India
关键词
Starlike functions; subordination; radius problem; uniformly convex functions; Ma-Minda starlike functions; SUBCLASS;
D O I
10.1007/s00025-025-02359-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A normalized analytic function f defined on the unit disk is Ma-Minda starlike (with respect to phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}) if the quantity zf '(z)/f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf'(z)/f(z)$$\end{document} is subordinate to the function phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. The radius of starlikeness and parabolic starlikeness of the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of univalent functions on the unit disk are well-known. In this paper, we determine the radii of functions in S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} to belong to several well-known classes of Ma-Minda starlike functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Logarithmic Coefficients for Univalent Functions Defined by Subordination
    Adegani, Ebrahim Analouei
    Cho, Nak Eun
    Jafari, Mostafa
    MATHEMATICS, 2019, 7 (05)
  • [32] Sufficiency for nephroid starlikeness using hypergeometric functions
    Swaminathan, Anbhu
    Wani, Lateef Ahmad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (09) : 5388 - 5401
  • [33] RADII OF STARLIKENESS AND CONVEXITY OF ANALYTIC FUNCTIONS SATISFYING CERTAIN COEFFICIENT INEQUALITIES
    Ravichandran, V.
    MATHEMATICA SLOVACA, 2014, 64 (01) : 27 - 38
  • [34] Starlikeness of Hadamard product of certain analytic functions
    Sakol, Janusz
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1157 - 1160
  • [35] STARLIKENESS OF BESSEL FUNCTIONS AND THEIR DERIVATIVES
    Baricz, Arpad
    Caglar, Murat
    Deniz, Erhan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02): : 439 - 449
  • [36] A NEW SUBCLASS OF UNIVALENT FUNCTIONS
    Singh, Gurmeet
    Singh, Gagandeep
    Singh, Gurcharanjit
    UFA MATHEMATICAL JOURNAL, 2019, 11 (01): : 133 - 140
  • [37] The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions
    Somya Malik
    Rosihan M. Ali
    V. Ravichandran
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2715 - 2732
  • [38] The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions
    Malik, Somya
    Ali, Rosihan M.
    Ravichandran, V.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2715 - 2732
  • [39] Starlikeness of Analytic Functions with Subordinate Ratios
    Ali, Rosihan M.
    Ravichandran, Vaithiyanathan
    Sharma, Kanika
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [40] On the order of strong starlikeness and the radii of starlikeness for of some close-to-convex functions
    Mamoru Nunokawa
    Janusz Sokół
    Analysis and Mathematical Physics, 2019, 9 : 2367 - 2378