Ma-Minda Starlikeness of Univalent Functions

被引:0
作者
Lecko, Adam [1 ]
Madhumitha, Saravanarasu [2 ]
Ravichandran, Vaithiyanathan [3 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Dept Complex Anal, Ul Sloneczna 54, PL-10710 Olsztyn, Poland
[2] Kongu Engn Coll, Dept Math, Perundurai 638060, Tamilnadu, India
[3] Natl Inst Technol, Dept Math, Trichy 620015, Tamilnadu, India
关键词
Starlike functions; subordination; radius problem; uniformly convex functions; Ma-Minda starlike functions; SUBCLASS;
D O I
10.1007/s00025-025-02359-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A normalized analytic function f defined on the unit disk is Ma-Minda starlike (with respect to phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}) if the quantity zf '(z)/f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf'(z)/f(z)$$\end{document} is subordinate to the function phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. The radius of starlikeness and parabolic starlikeness of the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of univalent functions on the unit disk are well-known. In this paper, we determine the radii of functions in S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} to belong to several well-known classes of Ma-Minda starlike functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Radius of starlikeness of certain analytic functions
    Madhumitha, S.
    Ravichandran, V
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [22] Radius of Limacon starlikeness for Janowski starlike functions
    Kanaga, R.
    Ravichandran, V
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [23] Starlikeness for certain close-to-star functions
    Kanaga, R.
    Ravichandran, V
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (02): : 414 - 432
  • [24] Starlikeness of analytic functions using special functions and subordination
    Sharma, Meghna
    Jain, Naveen Kumar
    Kumar, Sushil
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [25] Janowski starlikeness for a class of analytic functions
    Ali, Rosihan M.
    Chandrashekar, R.
    Ravichandran, V.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (04) : 501 - 505
  • [26] Radius of Starlikeness for Classes of Analytic Functions
    Lee, See Keong
    Khatter, Kanika
    Ravichandran, V.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4469 - 4493
  • [27] RADIUS OF STARLIKENESS OF CERTAIN ANALYTIC FUNCTIONS
    Sebastian, Asha
    Ravichandran, V
    MATHEMATICA SLOVACA, 2021, 71 (01) : 83 - 104
  • [28] Radius of starlikeness of certain analytic functions
    S. Madhumitha
    V. Ravichandran
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [29] Starlikeness of a product of starlike functions with non-vanishing polynomials
    Malik, Somya
    Ravichandran, V.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [30] Radii of Starlikeness of Ratios of Analytic Functions with Fixed Second Coefficients
    Rana, Shalini
    Ahuja, Om P.
    Jain, Naveen Kumar
    MATHEMATICS, 2022, 10 (23)