Ma-Minda Starlikeness of Univalent Functions

被引:0
作者
Lecko, Adam [1 ]
Madhumitha, Saravanarasu [2 ]
Ravichandran, Vaithiyanathan [3 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Dept Complex Anal, Ul Sloneczna 54, PL-10710 Olsztyn, Poland
[2] Kongu Engn Coll, Dept Math, Perundurai 638060, Tamilnadu, India
[3] Natl Inst Technol, Dept Math, Trichy 620015, Tamilnadu, India
关键词
Starlike functions; subordination; radius problem; uniformly convex functions; Ma-Minda starlike functions; SUBCLASS;
D O I
10.1007/s00025-025-02359-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A normalized analytic function f defined on the unit disk is Ma-Minda starlike (with respect to phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}) if the quantity zf '(z)/f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf'(z)/f(z)$$\end{document} is subordinate to the function phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. The radius of starlikeness and parabolic starlikeness of the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of univalent functions on the unit disk are well-known. In this paper, we determine the radii of functions in S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} to belong to several well-known classes of Ma-Minda starlike functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Certain Ma-Minda type classes of analytic functions associated with the crescent-shaped region
    Sharma, Poonam
    Raina, Ravinder Krishna
    Sokol, Janusz
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 1887 - 1903
  • [12] Toeplitz Determinants Associated with Ma-Minda Classes of Starlike and Convex Functions
    Ahuja, Om P.
    Khatter, Kanika
    Ravichandran, Vaithiyanathan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06): : 2021 - 2027
  • [13] Sharp Estimates of Generalized Zalcman Functional of Early Coefficients for Ma-Minda Type Functions
    Cho, Nak Eun
    Kwon, Oh Sang
    Lecko, Adam
    Sim, Young Jae
    FILOMAT, 2018, 32 (18) : 6267 - 6280
  • [14] Starlikeness of certain non-univalent functions
    Lecko, Adam
    Ravichandran, V
    Sebastian, Asha
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (04)
  • [15] New Subclasses of Bi-univalent Ma-Minda starlike function involving Fox-Wright function
    Pauzi, Mohd Nazran Mohammed
    Siregar, Saibah
    Nawi, Abdul Satar
    2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 187 - 192
  • [16] Starlikeness of certain non-univalent functions
    Adam Lecko
    V. Ravichandran
    Asha Sebastian
    Analysis and Mathematical Physics, 2021, 11
  • [17] Radius of starlikeness for some classes containing non-univalent functions
    Yadav, Shalu
    Sharma, Kanika
    Ravichandran, V
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (01)
  • [18] A New Special Class of Ma–Minda Type Starlike Functions
    Seyed Hadi Sayedain Boroujeni
    Shahram Najafzadeh
    Iranian Journal of Science, 2024, 48 : 151 - 159
  • [19] Coefficient estimates for some new classes of bi-Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator
    Orsolya, Pall-Szabo Agnes
    Wanas, Abbas Kareem
    QUAESTIONES MATHEMATICAE, 2021, 44 (04) : 495 - 502
  • [20] Certain Ma–Minda type classes of analytic functions associated with the crescent-shaped region
    Poonam Sharma
    Ravinder Krishna Raina
    Janusz Sokół
    Analysis and Mathematical Physics, 2019, 9 : 1887 - 1903