Development of cellulose-based superabsorbent polymers: a review

被引:0
|
作者
Shaheen, Wardah [1 ]
Iqbal, Muhammad Mudassir [1 ]
Qudrat, Laiba [1 ]
机构
[1] Super Univ Lahore, Dept Chem, Main Campus 17Km Raiwind Rd, Lahore 55150, Punjab, Pakistan
关键词
Absorbance capacity; Biodegradation; Cellulose; Hydrogels; Polymerization technique; Renewable; Superabsorbent Polymer; HYDROXYPROPYL METHYLCELLULOSE; CARBOXYMETHYL CELLULOSE; HYDROXYETHYL CELLULOSE; WATER-RETENTION; IRRADIATION SYNTHESIS; DIETARY-SUPPLEMENTS; SWELLING BEHAVIORS; ASSISTED SYNTHESIS; ACTIVATED CARBONS; CROSS-LINKING;
D O I
10.1007/s10570-025-06447-5
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Superabsorbent polymers (SAPs) are three-dimensional crosslinked hydrophilic polymers, that can absorb and retain liquids up to hundreds of times their weight. These polymers have diverse applications across various fields, including agriculture, biomedicine, separation technologies, and wastewater treatment. Among these cellulose-based SAPs are prominent due to their biodegradable nature, sustainability, biocompatibility, cost-effectiveness, and natural abundance. The development of SAPs has evolved significantly since 1961, marked by advancements in polymerization techniques and their integration into numerous aspects of daily life. This review provides a comprehensive analysis of recent advancements in the field of cellulose-based superabsorbents, focusing on their polymerization methods, source of cellulose, and diverse applications. Furthermore, it highlights the mechanisms by which different forms of cellulose can enhance liquid absorption capacity and kinetics across various applications. The findings underscore the importance of cellulose-derived SAPs in promoting environmentally sustainable practices while addressing the growing demand for effective water retention solutions in agricultural and industrial contexts.
引用
收藏
页码:2811 / 2845
页数:35
相关论文
共 50 条
  • [1] Advances in cellulose-based superabsorbent hydrogels
    Ma, Jianzhong
    Li, Xiaolu
    Bao, Yan
    RSC ADVANCES, 2015, 5 (73): : 59745 - 59757
  • [2] Cellulose-based polymers
    Zhou, Xing
    Hao, Yaya
    Zhang, Xin
    He, Xinyu
    Zhang, Chaoqun
    PHYSICAL SCIENCES REVIEWS, 2021, : 2001 - 2048
  • [3] Environmentally sustainable production of cellulose-based superabsorbent hydrogels
    Marcì, G
    Mele, G
    Palmisano, L
    Pulito, P
    Sannino, A
    GREEN CHEMISTRY, 2006, 8 (05) : 439 - 444
  • [4] Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity
    Peng, Na
    Wang, Yanfeng
    Ye, Qifa
    Liang, Lei
    An, Yuxing
    Li, Qiwei
    Chang, Chunyu
    CARBOHYDRATE POLYMERS, 2016, 137 : 59 - 64
  • [5] Biodegradable cellulose-based superabsorbent as potent hemostatic agent
    Mahmoodzadeh, Ahmad
    Moghaddas, Jafarsadegh
    Jarolmasjed, Seyedhosein
    Kalan, Abbas Ebrahimi
    Edalati, Mahdi
    Salehi, Roya
    CHEMICAL ENGINEERING JOURNAL, 2021, 418
  • [6] Biomimetic cellulose-based superabsorbent hydrogels for treating obesity
    Marta Madaghiele
    Christian Demitri
    Ivo Surano
    Alessandra Silvestri
    Milena Vitale
    Eliana Panteca
    Yishai Zohar
    Maria Rescigno
    Alessandro Sannino
    Scientific Reports, 11
  • [7] Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid
    Demitri, Christian
    Del Sole, Roberta
    Scalera, Francesca
    Sannino, Alessandro
    Vasapollo, Giuseppe
    Maffezzoli, Alfonso
    Ambrosio, Luigi
    Nicolais, Luigi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 110 (04) : 2453 - 2460
  • [8] Superabsorbent cellulose-based hydrogels cross-liked with borax
    Supachok Tanpichai
    Farin Phoothong
    Anyaporn Boonmahitthisud
    Scientific Reports, 12
  • [9] Cellulose-based aerogel from Eichhornia crassipes as an oil superabsorbent
    Yin, Tiantian
    Zhang, Xinying
    Liu, Xiaoyan
    Li, Beibei
    Wang, Chaoqun
    RSC ADVANCES, 2016, 6 (101): : 98563 - 98570
  • [10] Synthesis and Properties of Cellulose-based Superabsorbent Hydrogel by a New Crosslinker
    Heng-Xiang Li
    Xin Tian
    Luming Zhang
    Leili Wang
    Li’e Jin
    Qing Cao
    Fibers and Polymers, 2020, 21 : 1395 - 1402