Congruences modulo 4 and 8 for Ramanujan’s sixth-order mock theta function ρ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (q)$$\end{document}Congruences modulo 4 and 8 for Ramanujan’s sixth-order...Y. Hu etal.

被引:0
作者
Yueya Hu [1 ]
Eric H. Liu [2 ]
Olivia X. M. Yao [1 ]
机构
[1] Suzhou University of Science and Technology,School of Mathematical Sciences
[2] Shanghai University of International Business and Economics,School of Statistics and Information
关键词
Congruences; Ramanujan’s mock theta functions; Class number; 11P83; 05A17;
D O I
10.1007/s11139-024-01018-x
中图分类号
学科分类号
摘要
Recently, Wang gave a systematic study on the parity of coefficients of classical mock theta functions. Very recently, Chen and Garvan proved some congruences modulo 4 for five of Ramanujan’s mock theta functions. Kaur and Rana studied congruences for Ramanujan’s sixth-order mock theta function ρ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (q)$$\end{document} in the arithmetic progressions 2n. In this paper, we prove some new congruences modulo 4 and 8 for ρ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (q)$$\end{document} in the arithmetic progressions 2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n+1$$\end{document} by using some results on the Hurwitz class number due to Chen and Garvan and an identity proved by Mortenson.
引用
收藏
相关论文
empty
未找到相关数据