Recently, Wang gave a systematic study on the parity of coefficients of classical mock theta functions. Very recently, Chen and Garvan proved some congruences modulo 4 for five of Ramanujan’s mock theta functions. Kaur and Rana studied congruences for Ramanujan’s sixth-order mock theta function ρ(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho (q)$$\end{document} in the arithmetic progressions 2n. In this paper, we prove some new congruences modulo 4 and 8 for ρ(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho (q)$$\end{document} in the arithmetic progressions 2n+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2n+1$$\end{document} by using some results on the Hurwitz class number due to Chen and Garvan and an identity proved by Mortenson.