Online Algorithm for Deriving Heart Rate Variability Components and Their Time-Frequency Analysis

被引:1
|
作者
Adamczyk, Krzysztof [1 ]
Polak, Adam G. [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Elect Photon & Microsyst, PL-50372 Wroclaw, Poland
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 03期
关键词
heart rate variability; variational mode decomposition; online algorithm; amplitude and frequency modulation; VARIATIONAL MODE DECOMPOSITION; ULTRA-LOW; FLUCTUATION; SPECTRUM; SLEEP; POWER;
D O I
10.3390/app15031210
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application This work makes possible to extract heart rate variability components online in order to monitor the underlying human body systems, in particular to determine the activity of the sympathetic and parasympathetic branches of the autonomic nervous system (ANS) as well as the balance between them, and indirectly in detecting and monitoring many common diseases related to the cardiovascular system and ANS. Such a solution can, for example, be directly embedded into Holter devices. A more precise determination of the components' properties can give the opportunity to link them to specific physiological processes, especially those of very low and ultra-low frequencies, which has not yet been fully achieved, increasing the practical importance of this research.Abstract Heart rate variability (HRV) containing four components of high (HF), low (LF), very low (VLF), and ultra-low (ULF) frequencies provides insight into the cardiovascular and autonomic nervous system functions. Classical spectral analysis is most often used in research on HRV and its components. The aim of this work was to develop and validate an online HRV decomposition algorithm for monitoring the associated physiological processes. The online algorithm was developed based on variational mode decomposition (VMD), validated on synthetic HRV with known properties and compared with its offline adaptive version AVMD, standard VMD, continuous wavelet transform (CWT), and wavelet package decomposition (WPD). Finally, it was used to decompose 36 real all-night HRVs from two datasets to analyze the properties of the four extracted components using the Hilbert transform. The statistical tests confirmed that the online VMD (VMDon) algorithm returned results of comparable quality to AVMD and CWT, and outperformed standard VMD and WPD. VMDon, AVMD, and CWT extracted four components from the real HRV with frequency content slightly exceeding the previously recognized ranges, suggesting the possibility of their modes mixing. Their ranges of variability were assessed as follows: HF: 0.11-0.40 Hz; LF: 0.029-0.14 Hz; VLF: 4.7-31 mHz; and ULF: 0.002-3.0 mHz.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Time-frequency analysis of heart rate variability using short-time Fourier analysis
    Elsenbruch, S
    Wang, ZS
    Orr, WC
    Chen, JDZ
    PHYSIOLOGICAL MEASUREMENT, 2000, 21 (02) : 229 - 240
  • [22] Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability
    Tsipouras, MG
    Fotiadis, DI
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2004, 74 (02) : 95 - 108
  • [23] Preprocessing effects in time-frequency distributions and spectral analysis of heart rate variability
    Colak, Omer H.
    DIGITAL SIGNAL PROCESSING, 2009, 19 (04) : 731 - 739
  • [24] Time-frequency analysis of heart rate: Variability signals in patients with autonomic dysfunction
    Kamath, MV
    Bentley, T
    Spaziani, R
    Tougas, G
    Fallen, EL
    McCartney, N
    Runions, J
    Upton, ARM
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 373 - 376
  • [25] Time-Frequency Analysis of Heart Rate Variability in Neonatal Piglets Exposed to Hypoxia
    Dong, Shiying
    Mesbah, Mostefa
    Lingwood, Barbara E.
    Toole, John M. O'
    Boashash, Boualem
    2011 COMPUTING IN CARDIOLOGY, 2011, 38 : 701 - 704
  • [26] Correlates of the shift in heart rate variability with postures and walking by time-frequency analysis
    Chan, Hsiao-Lung
    Lin, Ming-An
    Chao, Pei-Kuang
    Lin, Chun-Hsien
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 86 (02) : 124 - 130
  • [27] Heart rate variability analysis in clinical pharmacology by joint time-frequency methods
    Adelmann, HG
    COMPUTERS IN CARDIOLOGY 1999, VOL 26, 1999, 26 : 643 - 645
  • [28] Post-exercise heart rate variability recovery: a time-frequency analysis
    Pecanha, Tiago
    de Paula-Ribeiro, Marcelle
    Nasario-Junior, Olivasse
    Perrout de Lima, Jorge Roberto
    ACTA CARDIOLOGICA, 2013, 68 (06) : 607 - 613
  • [29] Detection of sleep apnoea using time-frequency analysis of heart rate variability
    Bates, RA
    Hilton, MF
    Godfrey, KR
    Chappell, MJ
    MATHEMATICS IN SIGNAL PROCESSING IV, 1998, 67 : 357 - 367
  • [30] Time-frequency analysis of heart rate time series
    Naidu, VPS
    Mahalakshmi, P
    TENCON 2004 - 2004 IEEE REGION 10 CONFERENCE, VOLS A-D, PROCEEDINGS: ANALOG AND DIGITAL TECHNIQUES IN ELECTRICAL ENGINEERING, 2004, : A215 - A218