Phase-space distributions in information theory

被引:0
作者
Ojha, Vikash Kumar [1 ]
Radhakrishnan, Ramkumar [2 ]
Tiwari, Siddharth Kumar [1 ]
Ughradar, Mariyah [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Phys, Surat 395007, India
[2] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
来源
PRAMANA-JOURNAL OF PHYSICS | 2025年 / 99卷 / 01期
关键词
Wigner distribution; R & eacute; nyi entropy; mutual information; 03.67.-a; ENTANGLEMENT ENTROPY; WIGNER FUNCTION; DIVERGENCE;
D O I
10.1007/s12043-024-02875-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use phase-space distributions - specifically, the Wigner distribution (WD) and Husimi distribution (HD) - to investigate certain information-theoretic measures as descriptors for a given system. We extensively investigate and analyse Shannon, Wehrl and R & eacute;nyi entropies, their divergences, mutual information and other correlation measures within the context of these phase-space distributions. The analysis is illustrated with an anharmonic oscillator and is studied with respect to the perturbation parameter (lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) and states (n). The entropies associated with WD are observed to be lower than those of HD, which aligns with the findings regarding the marginals. Moreover, the real components of the entropies associated with WD tend to approach the entropic uncertainty bound more closely than those of the corresponding HD. Moreover, we quantify the precise amount of information lost when opting for HD over WD for characterising the specified system. Since it is not always positive definite, the entropies cannot always be defined.
引用
收藏
页数:14
相关论文
共 66 条
  • [1] Measuring Gaussian Quantum Information and Correlations Using the Renyi Entropy of Order 2
    Adesso, Gerardo
    Girolami, Davide
    Serafini, Alessio
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [2] [Anonymous], 2008, Phys. Lett. A, V372, P4918
  • [3] Generalized Husimi functions: analyticity and information content
    Appleby, DM
    [J]. JOURNAL OF MODERN OPTICS, 1999, 46 (05) : 825 - 841
  • [4] Quantum-information entropies of the eigenstates and the coherent state of the Poschl-Teller potential
    Atre, R
    Kumar, A
    Kumar, N
    Panigrahi, PK
    [J]. PHYSICAL REVIEW A, 2004, 69 (05) : 052107 - 1
  • [5] A Characterization of Entropy in Terms of Information Loss
    Baez, John C.
    Fritz, Tobias
    Leinster, Tom
    [J]. ENTROPY, 2011, 13 (11) : 1945 - 1957
  • [6] BASTIAANS MJ, 1979, J OPT SOC AM, V69, P1710, DOI 10.1364/JOSA.69.001710
  • [7] INEQUALITIES IN FOURIER-ANALYSIS
    BECKNER, W
    [J]. ANNALS OF MATHEMATICS, 1975, 102 (01) : 159 - 182
  • [8] Relaxation of Shannon entropy for trapped interacting bosons with dipolar interactions
    Bera, Sangita
    Haldar, Sudip Kumar
    Chakrabarti, Barnali
    Trombettoni, Andrea
    Kota, V. K. B.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (04)
  • [9] UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS
    BIALYNICKIBIRULA, I
    MYCIELSKI, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) : 129 - 132
  • [10] Probing Renyi entanglement entropy via randomized measurements
    Brydges, Tiff
    Elben, Andreas
    Jurcevic, Petar
    Vermersch, Benoit
    Maier, Christine
    Lanyon, Ben P.
    Zoller, Peter
    Blatt, Rainer
    Roos, Christian F.
    [J]. SCIENCE, 2019, 364 (6437) : 260 - +