A fuzzy state-dependent Riccati equation control: adaptive tuning of the state weighting matrix

被引:0
作者
Batmani, Yazdan [1 ]
Khodakaramzadeh, Shadi [1 ]
Nekoo, Saeed Rafee [2 ]
机构
[1] Univ Kurdistan, Dept Elect Engn, Sanandaj, Kurdistan, Iran
[2] Univ Seville, Dept Ingn Sistemas & Automat, Seville, Spain
关键词
Adaptive tuning; Fuzzy tuning; Optimal control; SDRE; ATTITUDE-CONTROL; DESIGN; OBSERVER;
D O I
10.1007/s40430-024-05351-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The tuning of the state-dependent Riccati equation (SDRE) is achieved by selecting/adjusting weighting matrices for states, Q(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf {Q(x)}}$$\end{document}, and inputs, R(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf {R(x)}}$$\end{document}. The tuning results in a trade-off between the performance of the control system and energy consumption. An increase in Q(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf {Q(x)}}$$\end{document} or a decrease in R(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf {R(x)}}$$\end{document} enhances the amplitude of the input signals and also reduces the error. In order to adjust the SDRE control law with high precision, the input signal may face saturation at the beginning of the regulation (point-to-point motion) since the error is at the highest value there. The proposed fuzzy tuning method adapts the weighting matrix of states, Q(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf {Q(x)}}$$\end{document}, according to the amplitude of the error and avoids saturation of the input signal. It also increases the precision during the steady-state phase of regulation without significantly increasing energy consumption. To assess the performance of the proposed closed-loop system, a blood glucose control case study is modeled and simulated to apply this approach as a challenging and important application; besides, a planar manipulator is simulated as an illustrative example to show the effectiveness of the fuzzy mechanism in tuning and error. The results illustrated that the proposed fuzzy-tuned SDRE controller obtained less error in point-to-point control with a smoother input signal.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Spacecraft attitude control via a combined state-dependent Riccati equation and adaptive neuro-fuzzy approach [J].
Abdelrahman, Mohammad ;
Park, Sang-Young .
AEROSPACE SCIENCE AND TECHNOLOGY, 2013, 26 (01) :16-28
[2]   Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: Modeling, design and experimental validation [J].
Abdullah, Majid A. ;
Al-Shetwi, Ali Q. ;
Mansor, M. ;
Hannan, M. A. ;
Tan, Chee Wei ;
Yatim, A. H. M. .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 50
[3]   Non-linear estimation and observer-based output feedback control [J].
Batmani, Y. ;
Khodakaramzadeh, S. .
IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (17) :2548-2555
[4]   Automatic Artificial Pancreas Systems Using an Intelligent Multiple-Model PID Strategy [J].
Batmani, Yazdan ;
Khodakaramzadeh, Shadi ;
Moradi, Parham .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) :1708-1717
[5]   Nonlinear Suboptimal Tracking Controller Design Using State-Dependent Riccati Equation Technique [J].
Batmani, Yazdan ;
Davoodi, Mohammadreza ;
Meskin, Nader .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (05) :1833-1839
[6]   On the design of suboptimal sliding manifold for a class of nonlinear uncertain time-delay systems [J].
Batmani, Yazdan ;
Khaloozadeh, Hamid .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (11) :2543-2552
[7]   Anti-swing radial basis neuro-fuzzy linear quadratic regulator control of double link rotary pendulum [J].
Ben Hazem, Zied ;
Fotuhi, Mohammad Javad ;
Bingul, Zafer .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2022, 236 (03) :531-545
[8]  
Chee F, 2007, LECT NOTES CONTR INF, V368, P1, DOI 10.1007/978-3-540-74031-5
[9]   An adaptive fuzzy sliding mode controller for the depth control of an underactuated underwater vehicle [J].
Chen, Yuan ;
Yan, Yinpo ;
Wang, Kangling ;
Liu, Shuqi .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2019, 16 (02)
[10]  
Cimen T., 2008, IFAC Proceedings Volumes, V41, P3761