Mass and topology of hypersurfaces in static perfect fluid spacesMass and topology of hypersurfaces in static perfect fluid spacesM. Andrade et al.

被引:0
作者
Maria Andrade [1 ]
Benedito Leandro [2 ]
Thamara Policarpo [3 ]
机构
[1] Universidade Federal de Sergipe,DMA
[2] Universidade de Brasília,Departamento de Matemática
[3] Universidade Federal de Goiás,IME
关键词
Static space; Perfect fluid; Vacuum; Minimal surface; 53C21; 53C23; 83C05;
D O I
10.1007/s10714-025-03362-9
中图分类号
学科分类号
摘要
We investigate the topological implications of stable minimal surfaces existing in a static perfect fluid space while ensuring that the fluid satisfies certain energy conditions. Based on the main findings, the topology of the level set {f=c}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f=c\}$$\end{document} (the boundary of a stellar model) is studied, where c is a positive constant and f is the static potential of a static perfect fluid space. Bounds for the Hawking mass for the level set {f=c}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f=c\}$$\end{document} of a static perfect fluid space are derived. Consequently, we prove an inequality that resembles the Penrose inequality for compact and non-compact static perfect fluid spaces, guaranteeing that the Hawking mass is positive for a class of surfaces in a static perfect fluid space. We will present a section dedicated to examples of static stellar models, one of them inspired by Witten’s black hole (or Hamilton’s cigar).
引用
收藏
相关论文
empty
未找到相关数据