Kantorovich Variant of the Blending Type Bernstein Operators

被引:3
作者
Baytunc, Erdem [1 ]
Gezer, Halil [2 ]
Aktuglu, Huseyin [1 ]
机构
[1] Eastern Mediterranean Univ, Fac Art & Sci, Dept Math, 10 Mersin, TR-99450 Famagusta, Turkiye
[2] Cyprus Int Univ, Fac Art & Sci, Dept Basic Sci & Humanities, 10 Mersin, TR-99010 Nicosia, Turkiye
关键词
Bernstein operators; Bernstein-Kantorovich operators; Polynomial approximation; Rate of convergence; Modulus of continuity; Shape-preserving properties; Uniform convergence; APPROXIMATION;
D O I
10.1007/s41980-024-00917-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a novel class of blending-type Bernstein-Kantorovich operators. These operators depend on three parameters: alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. We establish results on the uniform convergence and rate of convergence of these operators in terms of the first and second order modulus of continuity. We also investigate the shape-preserving properties of the operators, such as monotonicity and convexity, for each choice of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. Finally, we provide graphical and numerical results to illustrate the accuracy of the operators and to demonstrate how they approach certain functions.
引用
收藏
页数:29
相关论文
共 29 条
[11]  
Braha NL, 2023, B IRAN MATH SOC, V49, DOI 10.1007/s41980-023-00811-6
[12]   Approximation properties of λ-Bernstein operators [J].
Cai, Qing-Bo ;
Lian, Bo-Yong ;
Zhou, Guorong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[13]   Approximation of functions by a new family of generalized Bernstein operators [J].
Chen, Xiaoyan ;
Tan, Jieqing ;
Liu, Zhi ;
Xie, Jin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) :244-261
[14]  
Davis P.J., 1975, Interpolation and Approximation
[15]  
DeVore R.A., 1993, Constructive Approximation
[16]  
Ditzian Z., 1987, MODULI SMOOTHNESS, DOI [10.1007/978-1-4612-4778-4, DOI 10.1007/978-1-4612-4778-4]
[17]   Generalized blending type Bernstein operators based on the shape parameter λ [J].
Gezer, Halil ;
Aktuglu, Huseyin ;
Baytunc, Erdem ;
Atamert, Mehmet Salih .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
[18]   On One- and Two-Dimensional α-Stancu-Schurer-Kantorovich Operators and Their Approximation Properties [J].
Heshamuddin, Md ;
Rao, Nadeem ;
Lamichhane, Bishnu P. ;
Kilicman, Adem ;
Ayman-Mursaleen, Mohammad .
MATHEMATICS, 2022, 10 (18)
[19]  
Kantorovich L.V., 1930, C. R. Acad, V563-568, P595
[20]   A new approach to improve the order of approximation of the Bernstein operators: theory and applications [J].
Khosravian-Arab, Hassan ;
Dehghan, Mehdi ;
Eslahchi, M. R. .
NUMERICAL ALGORITHMS, 2018, 77 (01) :111-150