Kantorovich Variant of the Blending Type Bernstein Operators

被引:3
作者
Baytunc, Erdem [1 ]
Gezer, Halil [2 ]
Aktuglu, Huseyin [1 ]
机构
[1] Eastern Mediterranean Univ, Fac Art & Sci, Dept Math, 10 Mersin, TR-99450 Famagusta, Turkiye
[2] Cyprus Int Univ, Fac Art & Sci, Dept Basic Sci & Humanities, 10 Mersin, TR-99010 Nicosia, Turkiye
关键词
Bernstein operators; Bernstein-Kantorovich operators; Polynomial approximation; Rate of convergence; Modulus of continuity; Shape-preserving properties; Uniform convergence; APPROXIMATION;
D O I
10.1007/s41980-024-00917-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a novel class of blending-type Bernstein-Kantorovich operators. These operators depend on three parameters: alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. We establish results on the uniform convergence and rate of convergence of these operators in terms of the first and second order modulus of continuity. We also investigate the shape-preserving properties of the operators, such as monotonicity and convexity, for each choice of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. Finally, we provide graphical and numerical results to illustrate the accuracy of the operators and to demonstrate how they approach certain functions.
引用
收藏
页数:29
相关论文
共 29 条
[1]   Degree of Approximation for Bivariate Generalized Bernstein Type Operators [J].
Acar, Tuncer ;
Kajla, Arun .
RESULTS IN MATHEMATICS, 2018, 73 (02)
[2]   On Kantorovich Modification of (p, q)-Bernstein Operators [J].
Acar, Tuncer ;
Aral, Ali ;
Mohiuddine, S. A. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3) :1459-1464
[3]   Approximation properties of λ-Kantorovich operators [J].
Acu, Ana-Maria ;
Manav, Nesibe ;
Sofonea, Daniel Florin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[4]   APPROXIMATION PROPERTIES OF GENERALIZED BLENDING TYPE LOTOTSKY-BERNSTEIN OPERATORS [J].
Aktuglu, Huseyin ;
Gezer, Halil ;
Baytunc, Erdem ;
Atamert, Mehmet Salih .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02) :707-728
[5]   SOME APPROXIMATION RESULTS ON A CLASS OF NEW TYPE λ-BERNSTEIN POLYNOMIALS [J].
Aslan, Resat ;
Mursaleen, Mohammad .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02) :445-462
[6]   Approximation by the modified λ-Bernstein-polynomial in terms of basis function [J].
Ayman-Mursaleen, Mohammad ;
Nasiruzzaman, Md. ;
Rao, Nadeem ;
Dilshad, Mohammad ;
Nisar, Kottakkaran Sooppy .
AIMS MATHEMATICS, 2024, 9 (02) :4409-4426
[7]   A Note on Approximation of Blending Type Bernstein-Schurer-Kantorovich Operators with Shape Parameter α [J].
Ayman-Mursaleen, Mohammad ;
Rao, Nadeem ;
Rani, Mamta ;
Kilicman, Adem ;
Al-Abied, Ahmed Ahmed Hussin Ali ;
Malik, Pradeep .
JOURNAL OF MATHEMATICS, 2023, 2023
[8]   Blending type approximation by bivariate generalized Bernstein type operators [J].
Baxhaku, Behar ;
Kajla, Arun .
QUAESTIONES MATHEMATICAE, 2020, 43 (10) :1449-1465
[9]   APPROXIMATION PROPERTIES OF RIEMANN-LIOUVILLE TYPE FRACTIONAL BERNSTEIN-KANTOROVICH OPERATORS OF ORDER [J].
Baytunc, Erdem ;
Aktuglu, Huseyin ;
Mahmudov, Nazim I. .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (04) :544-567
[10]  
Bernstein S.N., 1912, Commun Kharkov Math Soc, V12, P1