On Q-polynomial distance-regular graphs with a linear dependency involving a 3-clique

被引:0
作者
Jazaeri, Mojtaba [1 ]
机构
[1] Shahid Chamran Univ Ahvaz, Dept Math, Ahvaz, Iran
关键词
Distance-regular graph; Q-polynomial; Classical parameters; Regular near polygon;
D O I
10.1007/s10801-025-01397-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} denote a distance-regular graph with diameter D >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D \ge 2$$\end{document}. Let E denote a primitive idempotent of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} with respect to which Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is Q-polynomial. Assume that there exists a 3-clique {x,y,z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x,y,z\}$$\end{document} such that Ex<^>,Ey<^>,Ez<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\hat{x},E\hat{y},E\hat{z}$$\end{document} are linearly dependent. In this paper, we classify all the Q-polynomial distance-regular graphs Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} with the above property. We describe these graphs from multiple points of view.
引用
收藏
页数:11
相关论文
共 10 条
[1]  
Brouwer A.E., 1989, Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], V18
[2]   On Q-polynomial regular near 2d-gons [J].
De Bruyn, Bart ;
Vanhove, Frederic .
COMBINATORICA, 2015, 35 (02) :181-208
[3]  
SHULT EE, 1980, GEOM DEDICATA, V9, P1, DOI DOI 10.1007/BF00156473
[4]   An inequality for regular near polygons [J].
Terwilliger, P ;
Weng, CW .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (02) :227-235
[5]   KITE-FREE DISTANCE-REGULAR GRAPHS [J].
TERWILLIGER, P .
EUROPEAN JOURNAL OF COMBINATORICS, 1995, 16 (04) :405-414
[6]  
Terwilliger P., 2024, London Math. Soc. Lecture Note Ser, V487, P430
[7]  
Terwilliger P., 2022, Some open problems about distance-regular graphs, Algebraicgraph theory course
[8]  
van Dam ER, 2016, ELECTRON J COMB, P1
[9]   Classical distance-regular graphs of negative type [J].
Weng, CW .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 76 (01) :93-116
[10]   D-bounded distance-regular graphs [J].
Weng, CW .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (02) :211-229