Lissajous dynamics of a quantum particle in a tilted two-dimensional discrete lattice

被引:0
作者
Jaczewski, Grzegorz [1 ,2 ]
Sowinski, Tomasz [2 ]
机构
[1] Univ Warsaw, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[2] Polish Acad Sci, Inst Phys, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 11期
关键词
BLOCH OSCILLATIONS; COHERENT STATES; ELECTRONS;
D O I
10.1140/epjp/s13360-024-05787-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum dynamics of a single particle in a discrete two-dimensional tilted lattice is analyzed from the perspective of the classical-quantum correspondence. Utilizing the fact that tilting the lattice results in oscillatory dynamics, we show how the parameters of the lattice and the initial state of the particle can be tuned so that during evolution the probability distribution does not change its shape, while its center follows the trajectory known in classical mechanics as Lissajous curves.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] QUANTUM RANDOM-WALKS
    AHARONOV, Y
    DAVIDOVICH, L
    ZAGURY, N
    [J]. PHYSICAL REVIEW A, 1993, 48 (02): : 1687 - 1690
  • [2] Invariant operators for quadratic Hamiltonians
    Andrews, M
    [J]. AMERICAN JOURNAL OF PHYSICS, 1999, 67 (04) : 336 - 343
  • [3] Quantum walks in weak electric fields and Bloch oscillations
    Arnault, Pablo
    Pepper, Benjamin
    Perez, A.
    [J]. PHYSICAL REVIEW A, 2020, 101 (06)
  • [4] QUASICLASSICAL TRAJECTORY-COHERENT STATES OF A PARTICLE IN AN ARBITRARY ELECTROMAGNETIC-FIELD
    BAGROV, VG
    BELOV, VV
    TERNOV, IM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) : 2855 - 2859
  • [5] About the Quantum mechanics of Electrons in Crystal lattices.
    Bloch, Felix
    [J]. ZEITSCHRIFT FUR PHYSIK, 1929, 52 (7-8): : 555 - 600
  • [6] Bloch-Zener oscillations
    Breid, B. M.
    Witthaut, D.
    Korsch, H. J.
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8
  • [7] Multiparticle Quantum Walks and Fisher Information in One-Dimensional Lattices
    Cai, Xiaoming
    Yang, Hongting
    Shi, Hai-Long
    Lee, Chaohong
    Andrei, Natan
    Guan, Xi-Wen
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (10)
  • [8] Bloch oscillations in two-dimensional crystals: Inverse problem
    Carrillo, M.
    Gonzalez, J. A.
    Hernandez, S.
    Lopez, C. E.
    Raya, A.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2017, 137 : 1 - 5
  • [9] Propagation of Quantum Walks in Electric Fields
    Cedzich, C.
    Rybar, T.
    Werner, A. H.
    Alberti, A.
    Genske, M.
    Werner, R. F.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (16)
  • [10] Ehrenfest P., 1927, Z. Phys., V45, P455, DOI DOI 10.1007/BF01329203