The artificial intelligence revolution in gastric cancer management: clinical applications

被引:0
作者
Li, Runze [1 ]
Li, Jingfan [1 ]
Wang, Yuman [1 ]
Liu, Xiaoyu [1 ]
Xu, Weichao [1 ,3 ]
Sun, Runxue [3 ]
Xue, Binqing [1 ]
Zhang, Xinqian [1 ]
Ai, Yikun [2 ]
Du, Yanru [3 ,4 ,5 ]
Jiang, Jianming [1 ,3 ]
机构
[1] Hebei Univ Tradit Chinese Med, Shijiazhuang 050011, Hebei, Peoples R China
[2] North China Univ Sci & Technol, Tanshan 063000, Peoples R China
[3] Hebei Hosp Tradit Chinese Med, Shijiazhuang 050011, Hebei, Peoples R China
[4] Hebei Prov Key Lab Integrated Tradit & Western Med, Shijiazhuang 050011, Hebei, Peoples R China
[5] Hebei Key Lab Turbid & Toxicol, Shijiazhuang 050011, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial intelligence; Gastric cancer; Diagnosis; Treat; Forecast; Research progress; LYMPH-NODE METASTASIS; DISEASE-FREE SURVIVAL; TUMOR MICROENVIRONMENT; PERITONEAL RECURRENCE; PROGNOSTIC SIGNATURE; RADIOMIC NOMOGRAM; CT IMAGES; GASTRECTOMY; CHEMOTHERAPY; ENDOSCOPY;
D O I
10.1186/s12935-025-03756-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Nowadays, gastric cancer has become a significant issue in the global cancer burden, and its impact cannot be ignored. The rapid development of artificial intelligence technology is attempting to address this situation, aiming to change the clinical management landscape of gastric cancer fundamentally. In this transformative change, machine learning and deep learning, as two core technologies, play a pivotal role, bringing unprecedented innovations and breakthroughs in the diagnosis, treatment, and prognosis evaluation of gastric cancer. This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. These applications not only significantly improve the sensitivity of gastric cancer risk monitoring, the accuracy of diagnosis, and the precision of survival prognosis but also provide robust data support and a scientific basis for clinical decision-making. The integration of artificial intelligence, from optimizing the diagnosis process and enhancing diagnostic efficiency to promoting the practice of precision medicine, demonstrates its promising prospects for reshaping the treatment model of gastric cancer. Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching.
引用
收藏
页数:21
相关论文
共 163 条
[1]   Development and multi-institutional validation of an artificial intelligence-based diagnostic system for gastric biopsy [J].
Abe, Hiroyuki ;
Kurose, Yusuke ;
Takahama, Shusuke ;
Kume, Ayako ;
Nishida, Shu ;
Fukasawa, Miyako ;
Yasunaga, Yoichi ;
Ushiku, Tetsuo ;
Ninomiya, Youichiro ;
Yoshizawa, Akihiko ;
Murao, Kohei ;
Sato, Shin'ichi ;
Kitsuregawa, Masaru ;
Harada, Tatsuya ;
Kitagawa, Masanobu ;
Fukayama, Masashi .
CANCER SCIENCE, 2022, 113 (10) :3608-3617
[2]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[3]   Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial [J].
Al-Batran, Salah-Eddin ;
Homann, Nils ;
Pauligk, Claudia ;
Goetze, Thorsten O. ;
Meiler, Johannes ;
Kasper, Stefan ;
Kopp, Hans-Georg ;
Mayer, Frank ;
Haag, Georg Martin ;
Luley, Kim ;
Lindig, Udo ;
Schmiegel, Wolff ;
Pohl, Michael ;
Stoehlmacher, Jan ;
Folprecht, Gunnar ;
Probst, Stephan ;
Prasnikar, Nicole ;
Fischbach, Wolfgang ;
Mahlberg, Rolf ;
Trojan, Joerg ;
Koenigsmann, Michael ;
Martens, Uwe M. ;
Thuss-Patience, Peter ;
Egger, Matthias ;
Block, Andreas ;
Heinemann, Volker ;
Illerhaus, Gerald ;
Moehler, Markus ;
Schenk, Michael ;
Kullmann, Frank ;
Behringer, Dirk M. ;
Heike, Michael ;
Pink, Daniel ;
Teschendorf, Christian ;
Loehr, Carmen ;
Bernhard, Helga ;
Schuch, Gunter ;
Rethwisch, Volker ;
von Weikersthal, Ludwig Fischer ;
Hartmann, Joerg T. ;
Kneba, Michael ;
Daum, Severin ;
Schulmann, Karsten ;
Weniger, Joerg ;
Belle, Sebastian ;
Gaiser, Timo ;
Oduncu, Fuat S. ;
Guentner, Martina ;
Hozaeel, Wael ;
Reichart, Alexander .
LANCET, 2019, 393 (10184) :1948-1957
[4]   Immunotherapy biomarkers: the long and winding road [J].
Alban, Tyler J. ;
Chan, Timothy A. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (06) :323-324
[5]   Current developments in gastric cancer: from molecular profiling to treatment strategy [J].
Alsina, Maria ;
Arrazubi, Virginia ;
Diez, Marc ;
Tabernero, Josep .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2023, 20 (03) :155-170
[6]   Machine learning-based personalized prediction of gastric cancer incidence using the endoscopic and histologic findings at the initial endoscopy [J].
Arai, Junya ;
Aoki, Tomonori ;
Sato, Masaya ;
Niikura, Ryota ;
Suzuki, Nobumi ;
Ishibashi, Rei ;
Tsuji, Yosuke ;
Yamada, Atsuo ;
Hirata, Yoshihiro ;
Ushiku, Tetsuo ;
Hayakawa, Yoku ;
Fujishiro, Mitsuhiro .
GASTROINTESTINAL ENDOSCOPY, 2022, 95 (05) :864-872
[7]   Assessment of deep learning assistance for the pathological diagnosis of gastric cancer [J].
Ba, Wei ;
Wang, Shuhao ;
Shang, Meixia ;
Zhang, Ziyan ;
Wu, Huan ;
Yu, Chunkai ;
Xing, Ranran ;
Wang, Wenjuan ;
Wang, Lang ;
Liu, Cancheng ;
Shi, Huaiyin ;
Song, Zhigang .
MODERN PATHOLOGY, 2022, 35 (09) :1262-1268
[8]   Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer [J].
Bai, Yuezong ;
Xie, Tong ;
Wang, Zhenghang ;
Tong, Shuang ;
Zhao, Xiaochen ;
Zhao, Feilong ;
Cai, Jinping ;
Wei, Xiaofan ;
Peng, Zhi ;
Shen, Lin .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2022, 10 (03)
[9]   Establishing Machine Learning Models to Predict Curative Resection in Early Gastric Cancer with Undifferentiated Histology: Development and Usability Study [J].
Bang, Chang Seok ;
Ahn, Ji Yong ;
Kim, Jie-Hyun ;
Kim, Young-Il ;
Choi, Il Ju ;
Shin, Woon Geon .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (04)
[10]   Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial [J].
Bang, Yung-Jue ;
Van Cutsem, Eric ;
Feyereislova, Andrea ;
Chung, Hyun C. ;
Shen, Lin ;
Sawaki, Akira ;
Lordick, Florian ;
Ohtsu, Atsushi ;
Omuro, Yasushi ;
Satoh, Taroh ;
Aprile, Giuseppe ;
Kulikov, Evgeny ;
Hill, Julie ;
Lehle, Michaela ;
Ruschoff, Josef ;
Kang, Yoon-Koo .
LANCET, 2010, 376 (9742) :687-697