Uncovering temporal patterns in visualizations of high-dimensional data

被引:0
作者
Policar, Pavlin G. [1 ]
Zupan, Blaz [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
[2] Baylor Coll Med, Dept Educ Innovat & Technol, 1 Baylor Plz, Houston, TX 77030 USA
关键词
Temporal-data visualization; Dimensionality reduction; Data visualization; TIME;
D O I
10.1007/s10994-025-06734-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing availability of high-dimensional data, analysts often rely on exploratory data analysis to understand complex data sets. A key approach to exploring such data is dimensionality reduction, which embeds high-dimensional data in two dimensions to enable visual exploration. However, popular embedding techniques, such as t-SNE and UMAP, typically assume that data points are independent. When this assumption is violated, as in time-series data, the resulting visualizations may fail to reveal important temporal patterns and trends. To address this, we propose a formal extension to existing dimensionality reduction methods that incorporates two temporal loss terms that explicitly highlight temporal progression in the embedded visualizations. Through a series of experiments on both synthetic and real-world datasets, we demonstrate that our approach effectively uncovers temporal patterns and improves the interpretability of the visualizations. Furthermore, the method improves temporal coherence while preserving the fidelity of the embeddings, providing a robust tool for dynamic data analysis.
引用
收藏
页数:27
相关论文
共 45 条
  • [1] Aigner W., 2023, Visualization of time-oriented data, V2nd, DOI [10.1007/978-1-4471-7527-8, DOI 10.1007/978-1-4471-7527-8]
  • [2] Ali M., 2018, 2018 INT S BIG DAT V, P1, DOI [10.1109/BDVA.2018.8534025, DOI 10.1109/BDVA.2018.8534025]
  • [3] Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data
    Bach, Benjamin
    Shi, Conglei
    Heulot, Nicolas
    Madhyastha, Tara
    Grabowski, Tom
    Dragicevic, Pierre
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 559 - 568
  • [4] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [5] Becker F., 2014, ISR ROB 2014 41 INT, P1
  • [6] Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
    Belkina, Anna C.
    Ciccolella, Christopher O.
    Anno, Rina
    Halpert, Richard
    Spidlen, Josef
    Snyder-Cappione, Jennifer E.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Machine learning for anxiety and depression profiling and risk assessment in the aftermath of an emergency
    Benito, Guillermo Villanueva
    Goldberg, Ximena
    Brachowicz, Nicolai
    Castano-Vinyals, Gemma
    Blay, Natalia
    Espinosa, Ana
    Davidhi, Flavia
    Torres, Diego
    Kogevinas, Manolis
    de Cid, Rafael
    Petrone, Paula
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 157
  • [8] Bennett C., 2007, Computational Aesthetics in Graphics, Visualization, and Imaging, DOI [10.2312/COMPAESTH/COMPAESTH07/057, DOI 10.2312/COMPAESTH/COMPAESTH07/057]
  • [9] Explaining three-dimensional dimensionality reduction plots
    Coimbra, Danilo B.
    Martins, Rafael M.
    Neves, Tacito T. A. T.
    Telea, Alexandru C.
    Paulovich, Fernando V.
    [J]. INFORMATION VISUALIZATION, 2016, 15 (02) : 154 - 172
  • [10] Crnovrsanin Tarik, 2009, Proceedings of the 2009 IEEE Symposium on Visual Analytics Science and Technology. VAST 2009. Held co-jointly with VisWeek 2009, P11, DOI 10.1109/VAST.2009.5332593