Artificial intelligence-based evaluation of prognosis in cirrhosis

被引:1
作者
Zhai, Yinping [1 ]
Hai, Darong [2 ]
Zeng, Li [3 ]
Lin, Chenyan [2 ]
Tan, Xinru [4 ]
Mo, Zefei [5 ]
Tao, Qijia [2 ]
Li, Wenhui [2 ]
Xu, Xiaowei [1 ]
Zhao, Qi [6 ,7 ]
Shuai, Jianwei [7 ,8 ]
Pan, Jingye [9 ,10 ,11 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 1, Dept Gastroenterol, Nursing Unit, Ward 192, Wenzhou 325000, Peoples R China
[2] Wenzhou Med Univ, Sch Nursing, Wenzhou 325000, Peoples R China
[3] Wenzhou Med Univ, Clin Med Coll 2, Wenzhou 325000, Peoples R China
[4] Wenzhou Med Univ, Sch Med 1, Sch Informat & Engn, Wenzhou 325000, Peoples R China
[5] Wenzhou Med Univ, Eye Hosp, Sch Biomed Engn, Sch Ophthalmol & Optometry, Wenzhou 325000, Peoples R China
[6] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Peoples R China
[7] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou 325000, Peoples R China
[8] Zhejiang Lab Regenerat Med Vis & Brain Hlth, Oujiang Lab, Wenzhou 325000, Peoples R China
[9] Wenzhou Med Univ, Affiliated Hosp 1, Dept Big Data Hlth Sci, Wenzhou 325000, Peoples R China
[10] Key Lab Intelligent Treatment & Life Support Crit, Wenzhou 325000, Peoples R China
[11] Zhejiang Engn Res Ctr Hosp Emergency & Proc Digiti, Wenzhou 325000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cirrhosis; Prognosis; Machine learning; Markers; Artificial intelligence; STAGE LIVER-DISEASE; HEPATOCELLULAR-CARCINOMA PATIENTS; PARENCHYMAL ECHO PATTERNS; CHILD-PUGH SCORE; NEURAL-NETWORK; CLINICAL-PRACTICE; EXTRACELLULAR VESICLES; PREDICTING MORTALITY; ACUTE DECOMPENSATION; EXTERNAL VALIDATION;
D O I
10.1186/s12967-024-05726-2
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cirrhosis represents a significant global health challenge, characterized by high morbidity and mortality rates that severely impact human health. Timely and precise prognostic assessments of liver cirrhosis are crucial for improving patient outcomes and reducing mortality rates as they enable physicians to identify high-risk patients and implement early interventions. This paper features a thorough literature review on the prognostic assessment of liver cirrhosis, aiming to summarize and delineate the present status and constraints associated with the application of traditional prognostic tools in clinical settings. Among these tools, the Child-Pugh and Model for End-Stage Liver Disease (MELD) scoring systems are predominantly utilized. However, their accuracy varies significantly. These systems are generally suitable for broad assessments but lack condition-specific applicability and fail to capture the risks associated with dynamic changes in patient conditions. Future research in this field is poised for deep exploration into the integration of artificial intelligence (AI) with routine clinical and multi-omics data in patients with cirrhosis. The goal is to transition from static, unimodal assessment models to dynamic, multimodal frameworks. Such advancements will not only improve the precision of prognostic tools but also facilitate personalized medicine approaches, potentially revolutionizing clinical outcomes.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Cancer Prognosis Using Artificial Intelligence-Based Techniques
    Surbhi Gupta
    Yogesh Kumar
    SN Computer Science, 2022, 3 (1)
  • [2] Artificial intelligence-based classification of echocardiographic views
    Naser, Jwan A.
    Lee, Eunjung
    Pislaru, Sorin, V
    Tsaban, Gal
    Malins, Jeffrey G.
    Jackson, John, I
    Anisuzzaman, D. M.
    Rostami, Behrouz
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Kane, Garvan C.
    Pellikka, Patricia A.
    Attia, Zachi, I
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (03): : 260 - 269
  • [3] Artificial intelligence-based predictive models in vascular diseases
    Lareyre, Fabien
    Chaudhuri, Arindam
    Behrendt, Christian-Alexander
    Pouhin, Alexandre
    Teraa, Martin
    Boyle, Jonathan R.
    Tulamo, Riikka
    Raffort, Juliette
    SEMINARS IN VASCULAR SURGERY, 2023, 36 (03) : 440 - 447
  • [4] Artificial intelligence-based ultrasound elastography for disease evaluation - a narrative review
    Zhang, Xian-Ya
    Wei, Qi
    Wu, Ge-Ge
    Tang, Qi
    Pan, Xiao-Fang
    Chen, Gong-Quan
    Zhang, Di
    Dietrich, Christoph F.
    Cui, Xin-Wu
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [5] Artificial Intelligence-Based Facial Palsy Evaluation: A Survey
    Zhang, Yating
    Gao, Weixiang
    Yu, Hui
    Dong, Junyu
    Xia, Yifan
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3116 - 3134
  • [6] Artificial Intelligence-Based Medical Data Mining
    Zia, Amjad
    Aziz, Muzzamil
    Popa, Ioana
    Khan, Sabih Ahmed
    Hamedani, Amirreza Fazely
    Asif, Abdul R.
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (09):
  • [7] Evaluation of an artificial intelligence-based system for echocardiographic estimation of right atrial pressure
    Ghada Zamzmi
    Li-Yueh Hsu
    Sivaramakrishnan Rajaraman
    Wen Li
    Vandana Sachdev
    Sameer Antani
    The International Journal of Cardiovascular Imaging, 2023, 39 : 2437 - 2450
  • [8] Evaluation of Artificial Intelligence-Based Gleason Grading Algorithms "in the Wild"
    Faryna, Khrystyna
    Tessier, Leslie
    Retamero, Juan
    Bonthu, Saikiran
    Samanta, Pranab
    Singhal, Nitin
    Kammerer-Jacquet, Solene-Florence
    Radulescu, Camelia
    Agosti, Vittorio
    Collin, Alexandre
    Farre, Xavier
    Fontugne, Jacqueline
    Grobholz, Rainer
    Hoogland, Agnes Marije
    Leite, Katia Ramos Moreira
    Oktay, Murat
    Polonia, Antonio
    Roy, Paromita
    Guilherme, Paulo
    van der Kwast, Theodorus H.
    van Ipenburg, Jolique
    van der Laak, Jeroen
    Litjens, Geert
    MODERN PATHOLOGY, 2024, 37 (11)
  • [9] An Artificial Intelligence-Based Cosmesis Evaluation for Temporomandibular Joint Reconstruction
    Hidaka, Takeaki
    Tanaka, Kentaro
    Mori, Hiroki
    LARYNGOSCOPE, 2023, 133 (04) : 841 - 848
  • [10] Evaluation of an artificial intelligence-based system for echocardiographic estimation of right atrial pressure
    Zamzmi, Ghada
    Hsu, Li-Yueh
    Rajaraman, Sivaramakrishnan
    Li, Wen
    Sachdev, Vandana
    Antani, Sameer
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2023, 39 (12) : 2437 - 2450