Robust Resource Allocation for Multitarget Tracking in Multiradar Systems With Parameter Estimation Uncertainty

被引:1
作者
Sun, Jun [1 ]
Yuan, Ye [1 ]
Greco, Maria Sabrina [2 ]
Gini, Fulvio [2 ]
Yang, Xiaobo [1 ]
Yi, Wei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Pisa, Dept Informat Engn, I-56126 Pisa, Italy
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Radar; Uncertainty; Radar tracking; Parameter estimation; Resource management; Target tracking; Scheduling; Multitarget tracking (MTT); parameter estimation uncertainty; resource-aware; robust scheduling; MULTIPLE TARGETS TRACKING; CRAMER-RAO BOUNDS; POWER ALLOCATION; MIMO RADAR; NETWORK; LOCALIZATION; OPTIMIZATION; ALGORITHM; SELECTION; DESIGN;
D O I
10.1109/TAES.2024.3397631
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In the design of resource-aware multitarget tracking (MTT) framework for multi-radar systems (MRSs), the estimated target parameters from the previous frame, such as distance, angle, and reflectivity, are generally utilized as prior information to guide resource scheduling at the current frame. However, achieving perfect estimation of these parameters is impossible in practice. Ignoring such uncertainty can result in unreliable solutions for resource scheduling. To address the uncertainty stemming from target parameter estimation during MTT, this article proposes a robust joint radar-to-target assignment and power allocation (RJRAPA) strategy in MRSs. At its core, the proposed method analyzes the probabilistic uncertainties of target parameters estimation within the confidence region and establishes the parameter uncertainty model. The posterior Cram & eacute;r-Rao lower bound (PCRLB), considering parameter estimation uncertainty, is derived and adopted as the metric to evaluate target tracking accuracy, since it can provide a lower bound for the accuracy of the target state estimation. Then, based on the derived PCRLB, a robust resource scheduling problem is formulated with the goal of ensuring the optimal MTT accuracy across the whole confidence region of target parameters. The RJRAPA problem is shown to be nonconvex with respect to the confidence regions of the target parameters. Thus, we present a convex relaxation approach for transforming the RJRAPA problem into a convex optimization problem with specific deterministic parameters. Numerical experiments that involve scenarios with parameter estimation uncertainties demonstrate the efficiency and robustness of our presented RJRAPA strategy.
引用
收藏
页码:5823 / 5841
页数:19
相关论文
共 50 条
[31]   An Approach to Robust Resource Allocation in Large-Scale Systems of Systems [J].
Kosak, Oliver ;
Anders, Gerrit ;
Siefert, Florian ;
Reif, Wolfgang .
2015 IEEE NINTH INTERNATIONAL CONFERENCE ON SELF-ADAPTIVE AND SELF-ORGANIZING SYSTEMS - SASO 2015, 2015, :1-10
[32]   Robust adaptive control for unmatched systems with guaranteed parameter estimation convergence [J].
Yang, Jun ;
Na, Jing ;
Gao, Guanbin .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (12) :1868-1884
[33]   Robust Resource Allocation With Imperfect Channel Estimation in NOMA-Based Heterogeneous Vehicular Networks [J].
Guo, Shengjie ;
Zhou, Xiangwei .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (03) :2321-2332
[34]   Robust Attitude Tracking in the Presence of Parameter Uncertainty for a Variable-Pitch Quadrotor [J].
Bhargavapuri, Mahathi ;
Sahoo, Soumya Ranjan ;
Kothari, Mangal ;
Abhishek .
2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, :3454-3459
[35]   A joint resource allocation method for multiple targets tracking in distributed MIMO radar systems [J].
Xiyu Song ;
Nae Zheng ;
Shuhao Yan ;
Haiwen Li .
EURASIP Journal on Advances in Signal Processing, 2018
[36]   A joint resource allocation method for multiple targets tracking in distributed MIMO radar systems [J].
Song, Xiyu ;
Zheng, Nae ;
Yan, Shuhao ;
Li, Haiwen .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2018,
[37]   ROBUST PARAMETER ESTIMATION FOR CONSTRAINED TIME-DELAY SYSTEMS WITH INEXACT MEASUREMENTS [J].
Liu, Chongyang ;
Han, Meijia ;
Gong, Zhaohua ;
Teo, Kok Lay .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (01) :317-337
[38]   Robust sensor scheduling via iterative design for parameter estimation of distributed systems [J].
Patan, Maciej ;
Kowalow, Damian .
2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, :618-623
[39]   A robust multi-objective resource allocation scheme incorporating uncertainty and service differentiation [J].
v. d. Kuijl, Alexander ;
Emmerich, Michael T. M. ;
Li, Hui .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2010, 22 (03) :314-328
[40]   State and parameter estimation in nonlinear systems as an optimal tracking problem [J].
Creveling, Daniel R. ;
Gill, Philip E. ;
Abarbanel, Henry D. I. .
PHYSICS LETTERS A, 2008, 372 (15) :2640-2644