Well/Ill-Posedness of the Boltzmann Equation with Soft Potential

被引:0
作者
Chen, Xuwen [1 ]
Shen, Shunlin [2 ]
Zhang, Zhifei [3 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII HIERARCHY; ILL-POSEDNESS; RIGOROUS DERIVATION; CLASSICAL-SOLUTIONS; LOCAL EXISTENCE; QUANTUM; REGULARITY; SPACE; UNIQUENESS;
D O I
10.1007/s00220-024-05157-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{s}$$\end{document} Sobolev space. We find the well/ill-posedness separation at regularity s=d-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=\frac{d-1}{2}$$\end{document}, strictly 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}-derivative higher than the scaling-invariant index s=d-22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=\frac{d-2}{2}$$\end{document}, the usually expected separation point.
引用
收藏
页数:51
相关论文
共 65 条
[61]   Exponential decay for soft potentials near Maxwellian [J].
Strain, Robert M. ;
Guo, Yan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 187 (02) :287-339
[62]  
Tao T., 2006, CBMS Regional Conference Series in Mathematics
[64]  
Tzvetkov N., 2006, GAKUTO Internat. Ser. Math. Sci. Appl., V27, P63
[65]  
Villani C., 2002, HDB MATH FLUID DYN HDB MATH FLUID DYN, VI, P71