Well/Ill-Posedness of the Boltzmann Equation with Soft Potential

被引:0
作者
Chen, Xuwen [1 ]
Shen, Shunlin [2 ]
Zhang, Zhifei [3 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII HIERARCHY; ILL-POSEDNESS; RIGOROUS DERIVATION; CLASSICAL-SOLUTIONS; LOCAL EXISTENCE; QUANTUM; REGULARITY; SPACE; UNIQUENESS;
D O I
10.1007/s00220-024-05157-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{s}$$\end{document} Sobolev space. We find the well/ill-posedness separation at regularity s=d-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=\frac{d-1}{2}$$\end{document}, strictly 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}-derivative higher than the scaling-invariant index s=d-22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=\frac{d-2}{2}$$\end{document}, the usually expected separation point.
引用
收藏
页数:51
相关论文
共 65 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]   Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :513-581
[3]   LOCAL EXISTENCE WITH MILD REGULARITY FOR THE BOLTZMANN EQUATION [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
KINETIC AND RELATED MODELS, 2013, 6 (04) :1011-1041
[4]   Convolution Inequalities for the Boltzmann Collision Operator [J].
Alonso, Ricardo J. ;
Carneiro, Emanuel ;
Gamba, Irene M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (02) :293-322
[5]   Estimates for the Boltzmann collision operator via radial symmetry and Fourier transform [J].
Alonso, Ricardo J. ;
Carneiro, Emanuel .
ADVANCES IN MATHEMATICS, 2010, 223 (02) :511-528
[6]   Global well-posedness of a binary-ternary Boltzmann equation [J].
Ampatzoglou, Ioakeim ;
Gamba, Irene M. ;
Pavlovic, Natasa ;
Taskovic, Maja .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (02) :327-369
[7]   On the Global Existence of Mild Solutions to the Boltzmann Equation for Small Data in LD [J].
Arsenio, Diogo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 302 (02) :453-476
[9]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P209, DOI 10.1007/BF01895688
[10]  
Cercignani C., 1994, APPL MATH SCI, V106