Optimal Transport of Maps

被引:0
|
作者
Jung, Woochul [1 ]
Morales, Carlos [2 ,3 ]
Wen, Xiao [4 ,5 ,6 ]
机构
[1] Konyang Univ Hosp, Healthcare Data Sci Ctr, Daejeon, South Korea
[2] Beihang Univ, Beijing Adv Innovat Ctr Future Blockchain & Privac, Beijing, Peoples R China
[3] Beijing Acad Blockchain & edge Comp, Beijing 100086, Peoples R China
[4] Beihang Univ, Sch Artificial Intelligence, Beijing, Peoples R China
[5] Beihang Univ, Sch Math Sci, Beijing, Peoples R China
[6] Beijing Zhongguancun Lab, Beijing, Peoples R China
基金
新加坡国家研究基金会;
关键词
Optimal transport; Mapping; Metric space; TOPOLOGICAL STABILITY;
D O I
10.1007/s10957-024-02576-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The problem of transporting graphs of continuous maps in a metric space with minimal cost is formulated. The minimal cost distance generated by this problem in the space of continuous maps is studied. The topology induced by this distance will be studied. A measure-theoretical version of the minimal cost distance will be given.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Quadratically Regularized Optimal Transport
    Lorenz, Dirk A.
    Manns, Paul
    Meyer, Christian
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) : 1919 - 1949
  • [32] Autoregressive optimal transport models
    Zhu, Changbo
    Mueller, Hans-Georg
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 1012 - 1033
  • [33] Quantum optimal transport: an invitation
    Trevisan, Dario
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 347 - 360
  • [34] On the Optimal Transport of Semiclassical Measures
    Lorenzo Zanelli
    Applied Mathematics & Optimization, 2016, 74 : 325 - 342
  • [35] Sliced Optimal Transport Sampling
    Paulin, Lois
    Bonneel, Nicolas
    Coeurjolly, David
    Iehl, Jean-Claude
    Webanck, Antoine
    Desbrun, Mathieu
    Ostromoukhov, Victor
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [36] Quadratically Regularized Optimal Transport
    Dirk A. Lorenz
    Paul Manns
    Christian Meyer
    Applied Mathematics & Optimization, 2021, 83 : 1919 - 1949
  • [37] Efficient Discretization of Optimal Transport
    Wang, Junqi
    Wang, Pei
    Shafto, Patrick
    ENTROPY, 2023, 25 (06)
  • [38] Semidual Regularized Optimal Transport
    Cuturi, Marco
    Peyre, Gabriel
    SIAM REVIEW, 2018, 60 (04) : 941 - 965
  • [39] Sliced optimal transport on the sphere
    Quellmalz, Michael
    Beinert, Robert
    Steidl, Gabriele
    INVERSE PROBLEMS, 2023, 39 (10)
  • [40] LINEARIZED OPTIMAL TRANSPORT ON MANIFOLDS*
    Sarrazin, Clement
    Schmitzer, Bernhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) : 4970 - 5016